Sturges BK, Dickinson PJ, Tripp LD, Udaltsova I, LeCouteur RA. Intracranial pressure monitoring in normal dogs using subdural and intraparenchymal miniature strain-gauge transducers.
J Vet Intern Med 2018;
33:708-716. [PMID:
30575120 PMCID:
PMC6430958 DOI:
10.1111/jvim.15333]
[Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/24/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022] Open
Abstract
Background
Monitoring of intracranial pressure (ICP) is a critical component in the management of intracranial hypertension. Safety, efficacy, and optimal location of microsensor devices have not been defined in dogs.
Hypothesis/Objective
Assessment of ICP using a microsensor transducer is feasible in anesthetized and conscious animals and is independent of transducer location. Intraparenchymal transducer placement is associated with more adverse effects.
Animals
Seven adult, bred‐for‐research dogs.
Methods
In a prospective investigational study, microsensor ICP transducers were inserted into subdural and intraparenchymal locations at defined rostral or caudal locations within the rostrotentorial compartment under general anesthesia. Mean arterial pressure and ICP were measured continuously during physiological maneuvers, and for 20 hours after anesthesia.
Results
Baseline mean ± SD values for ICP and cerebral perfusion pressure were 7.2 ± 2.3 and 78.9 ± 7.6 mm Hg, respectively. Catheter position did not have a significant effect on ICP measurements. There was significant variation from baseline ICP accompanying physiological maneuvers (P < .001) and with normal activities, especially with changes in head position (P < .001). Pathological sequelae were more evident after intraparenchymal versus subdural placement.
Conclusions and Clinical Importance
Use of a microsensor ICP transducer was technically straightforward and provided ICP measurements within previously reported reference ranges. Results support the use of an accessible dorsal location and subdural positioning. Transient fluctuations in ICP are normal events in conscious dogs and large variations associated with head position should be accounted for when evaluating animals with intracranial hypertension.
Collapse