1
|
Prado MC, Campos P, Pasetto S, Marciano MA, Sinhoreti MAC, Geraldeli S, de-Jesus-Soares A, Abuna G. Development of nanobiosilicate, tricalcium phosphate and chlorhexidine materials for biomineralization with crystallographic similarity to hydroxyapatite and biomodified collagen. Dent Mater 2024; 40:267-275. [PMID: 37989699 DOI: 10.1016/j.dental.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/24/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVES The aim of this work is to test experimental cements, doped with a silicate based bioactive nanoparticle (NanoBiosilicate). Methods, we synthesized a glass nanoparticle by Sol-Gel Stöber method, used to be incorporated in a dental material for endodontic uses. MATERIALS AND METHODS We assess the mineralizing properties and biocompatibility. Besides the crystallography characterization of the resultant new crystals. Results, After analysis, and comparison with commercial materials, the material tested was similar in mechanical properties required by ISO, The ion release was effective after 2 hr. of setting and the novel material was cell compatible accepted by ISO. RESULTS We found new formed Calcium Phosphate peaks in the spectroscopic analysis (FTIR), remarkably the crystals formed were comparable to hydroxyapatite when analyzed with a Selected Area Electron Diffractometer, with rings of 2.84 Å for 002, and the 2.77 Å is also visible for 210. The 6.83 Å and 6.88 Å, for respective 222 and 004. The incorporation of Chlorhexidine was not detrimental for this property, Significance, the features mentioned represented a progress in biomineralization field that was associated to an improved mineral structure formation with increased crystallographic similarity to natural hydroxyapatite. When chlorhexidine was added a favorable biomodification of the remaining collagen in dentinal walls and antimicrobial activity potential were also observed.
Collapse
Affiliation(s)
- Marina C Prado
- Department of Restorative Dentistry - Endodontics Division, Piracicaba Dental School - State University of Campinas (FOP-UNICAMP), Piracicaba, SP, Brazil; Department of General Dentistry, School of Dental Medicine - East Carolina University (ECU-SoDM), Greenville, NC, USA.
| | - Paulo Campos
- Department of Restorative Dentistry - Dental Materials Division, Piracicaba Dental School - State University of Campinas (FOP-UNICAMP), Piracicaba, SP, Brazil
| | - Silvana Pasetto
- Department of Biology, East Carolina University (ECU-SoDM), Greenville, NC, USA
| | - Marina A Marciano
- Department of Restorative Dentistry - Endodontics Division, Piracicaba Dental School - State University of Campinas (FOP-UNICAMP), Piracicaba, SP, Brazil
| | - Mário A C Sinhoreti
- Department of Restorative Dentistry - Dental Materials Division, Piracicaba Dental School - State University of Campinas (FOP-UNICAMP), Piracicaba, SP, Brazil
| | - Saulo Geraldeli
- Department of General Dentistry, School of Dental Medicine - East Carolina University (ECU-SoDM), Greenville, NC, USA
| | - Adriana de-Jesus-Soares
- Department of Restorative Dentistry - Endodontics Division, Piracicaba Dental School - State University of Campinas (FOP-UNICAMP), Piracicaba, SP, Brazil
| | - Gabriel Abuna
- Department of General Dentistry, School of Dental Medicine - East Carolina University (ECU-SoDM), Greenville, NC, USA.
| |
Collapse
|
2
|
Edanami N, Takenaka S, Ibn Belal RS, Yoshiba K, Takahara S, Yoshiba N, Ohkura N, Noiri Y. In Vivo Assessment of the Apatite-Forming Ability of New-Generation Hydraulic Calcium Silicate Cements Using a Rat Subcutaneous Implantation Model. J Funct Biomater 2023; 14:jfb14040213. [PMID: 37103303 PMCID: PMC10144219 DOI: 10.3390/jfb14040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/28/2023] Open
Abstract
Hydroxyapatite formation on endodontic hydraulic calcium silicate cements (HCSCs) plays a significant role in sealing the root canal system and elevating the hard-tissue inductivity of the materials. This study evaluated the in vivo apatite-forming ability of 13 new-generation HCSCs using an original HCSC (white ProRoot MTA: PR) as a positive control. The HCSCs were loaded into polytetrafluoroethylene tubes and implanted in the subcutaneous tissue of 4-week-old male Wistar rats. At 28 days after implantation, hydroxyapatite formation on the HCSC implants was assessed with micro-Raman spectroscopy, surface ultrastructural and elemental characterization, and elemental mapping of the material-tissue interface. Seven new-generation HCSCs and PR had a Raman band for hydroxyapatite (v1 PO43- band at 960 cm-1) and hydroxyapatite-like calcium-phosphorus-rich spherical precipitates on the surfaces. The other six HCSCs with neither the hydroxyapatite Raman band nor hydroxyapatite-like spherical precipitates did not show calcium-phosphorus-rich hydroxyapatite-layer-like regions in the elemental mapping. These results indicated that 6 of the 13 new-generation HCSCs possessed little or no ability to produce hydroxyapatite in vivo, unlike PR. The weak in vivo apatite-forming ability of the six HCSCs may have a negative impact on their clinical performance.
Collapse
Affiliation(s)
- Naoki Edanami
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Razi Saifullah Ibn Belal
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Kunihiko Yoshiba
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Shintaro Takahara
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Naoto Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8514, Japan
| |
Collapse
|
3
|
Simila HO, Boccaccini AR. Sol-gel synthesis of lithium doped mesoporous bioactive glass nanoparticles and tricalcium silicate for restorative dentistry: Comparative investigation of physico-chemical structure, antibacterial susceptibility and biocompatibility. Front Bioeng Biotechnol 2023; 11:1065597. [PMID: 37077228 PMCID: PMC10106781 DOI: 10.3389/fbioe.2023.1065597] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: The sol-gel method for production of mesoporous bioactive glass nanoparticles (MBGNs) has been adapted to synthesize tricalcium silicate (TCS) particles which, when formulated with other additives, form the gold standard for dentine-pulp complex regeneration. Comparison of TCS and MBGNs obtained by sol-gel method is critical considering the results of the first ever clinical trials of sol-gel BAG as pulpotomy materials in children. Moreover, although lithium (Li) based glass ceramics have been long used as dental prostheses materials, doping of Li ion into MBGNs for targeted dental applications is yet to be investigated. The fact that lithium chloride benefits pulp regeneration in vitro also makes this a worthwhile undertaking. Therefore, this study aimed to synthesize TCS and MBGNs doped with Li by sol-gel method, and perform comparative characterizations of the obtained particles.Methods: TCS particles and MBGNs containing 0%, 5%, 10% and 20% Li were synthesized and particle morphology and chemical structure determined. Powder concentrations of 15mg/10 mL were incubated in artificial saliva (AS), Hank’s balanced saline solution (HBSS) and simulated body fluid (SBF), at 37°C for 28 days and pH evolution and apatite formation, monitored. Bactericidal effects against S. aureus and E. coli, as well as possible cytotoxicity against MG63 cells were also evaluated through turbidity measurements.Results: MBGNs were confirmed to be mesoporous spheres ranging in size from 123 nm to 194 nm, while TCS formed irregular nano-structured agglomerates whose size was generally larger and variable. From ICP-OES data, extremely low Li ion incorporation into MBGNs was detected. All particles had an alkalinizing effect on all immersion media, but TCS elevated pH the most. SBF resulted in apatite formation for all particle types as early as 3 days, but TCS appears to be the only particle to form apatite in AS at a similar period. Although all particles had an effect on both bacteria, this was pronounced for undoped MBGNs. Whereas all particles are biocompatible, MBGNs showed better antimicrobial properties while TCS particles were associated with greater bioactivity.Conclusion: Synergizing these effects in dental biomaterials may be a worthwhile undertaking and realistic data on bioactive compounds targeting dental application may be obtained by varying the immersion media.
Collapse
|
4
|
de Souza GL, Magalhães TEA, Freitas GAN, Lemus NXA, Barbosa GLDR, Silva ACA, Moura CCG. Calcium-doped zinc oxide nanocrystals as an innovative intracanal medicament: a pilot study. Restor Dent Endod 2022; 47:e38. [PMID: 36518610 PMCID: PMC9715372 DOI: 10.5395/rde.2022.47.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/07/2022] Open
Abstract
Objectives This study investigated the cytotoxicity, radiopacity, pH, and dentinal tubule penetration of a paste of 1.0% calcium-doped zinc oxide nanocrystals (ZnO:1.0Ca) combined with propylene glycol (PRG) or polyethylene glycol and propylene glycol (PEG-PRG). Materials and Methods The pastes were prepared by mixing calcium hydroxide [Ca(OH)2] or ZnO:1.0Ca with PRG or a PEG-PRG mixture. The pH was evaluated after 24 and 96 hours of storage in deionized water. Digital radiographs were acquired for radiopacity analysis and bubble counting of each material. The materials were labeled with 0.1% fluorescein and applied to root canals, and images of their dentinal tubule penetration were obtained using confocal laser scanning microscopy. RAW264.7 macrophages were placed in different dilutions of culture media previously exposed to the materials for 24 and 96 hours and tested for cell viability using the MTT assay. Analysis of variance and the Tukey test (α = 0.05) were performed. Results ZnO:1.0Ca materials showed lower viability at 1:1 and 1:2 dilutions than Ca(OH)2 materials (p < 0.0001). Ca(OH)2 had higher pH values than ZnO:1.0Ca at 24 and 96 hours, regardless of the vehicle (p < 0.05). ZnO:1.0Ca pastes showed higher radiopacity than Ca(OH)2 pastes (p < 0.01). No between-material differences were found in bubble counting (p = 0.0902). The ZnO:1.0Ca pastes had a greater penetration depth than Ca(OH)2 in the apical third (p < 0.0001). Conclusions ZnO:1.0Ca medicaments presented higher penetrability, cell viability, and radiopacity than Ca(OH)2. Higher values of cell viability and pH were present in Ca(OH)2 than in ZnO:1.0Ca.
Collapse
Affiliation(s)
- Gabriela Leite de Souza
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | | | - Anielle Christine Almeida Silva
- Functional and New Nanostructured Materials Laboratory, Physics Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | | |
Collapse
|
5
|
Bilvinaite G, Drukteinis S, Brukiene V, Rajasekharan S. Immediate and Long-Term Radiopacity and Surface Morphology of Hydraulic Calcium Silicate-Based Materials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6635. [PMID: 36233978 PMCID: PMC9572346 DOI: 10.3390/ma15196635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The present study aimed to evaluate and compare the radiopacity and surface morphology of AH Plus Bioceramic Sealer (AHPB), Bio-C Sealer (BIOC), Biodentine (BD), BioRoot RCS (BR), Grey-MTAFlow (GMF), White-MTAFlow (WMF), TotalFill BC Sealer (TF), and TotalFill BC Sealer HiFlow (TFHF) at different time moments—30 min, 24 h, and 28 days. Ten specimens of each material were prepared according to the ISO-6876:2012 standard and radiographed next to an aluminum step wedge using a digital sensor. The specimens were stored in a gelatinized Hank’s balanced salt solution at 37 °C between assessments. The mean grayscale values of each specimen were converted into equivalent aluminum thickness by a linear regression model. Characterization of the surface morphology was performed by using a scanning electron microscope at ×4.0k and ×10.0k magnifications. The radiographic analysis revealed that all the tested materials exceeded the ISO-specified limit of 3 mm Al, with the highest radiopacity presented by AHPB and the lowest by BD. None of the tested materials demonstrated considerable variances between the 30 min and the 24 h radiopacity level (p < 0.05), and statistically significant long-term radiopacity changes were exhibited by BR, TFHF, and TF (p > 0.05). All the specimens demonstrated a common feature of limited precipitate formation, with numerous unreacted particles still presented on the surface after 24 h, whereas the particle rearrangement and the deposition of precipitates were clearly observed after 28 days.
Collapse
Affiliation(s)
- Goda Bilvinaite
- Institute of Dentistry, Faculty of Medicine, Vilnius University, Zalgirio 115, LT-08217 Vilnius, Lithuania
| | - Saulius Drukteinis
- Institute of Dentistry, Faculty of Medicine, Vilnius University, Zalgirio 115, LT-08217 Vilnius, Lithuania
| | - Vilma Brukiene
- Institute of Dentistry, Faculty of Medicine, Vilnius University, Zalgirio 115, LT-08217 Vilnius, Lithuania
| | - Sivaprakash Rajasekharan
- Department of Paediatric Dentistry, School of Oral Health Sciences, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
6
|
Radwanski M, Caporossi C, Lukomska-Szymanska M, Luzi A, Sauro S. Complicated Crown Fracture of Permanent Incisors: A Conservative Treatment Case Report and a Narrative Review. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090481. [PMID: 36135027 PMCID: PMC9495796 DOI: 10.3390/bioengineering9090481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022]
Abstract
Dental trauma may have a severe impact on the social and psychological wellbeing of a patient. Most cases of dental injuries involve anterior teeth, especially the maxillary upper incisors. Crown fractures, with or without pulp exposure, are the most common trauma in permanent dentition. There are many methods of management, in which the initial state of the pulp, the time since the injury, and the presence of an accompanying injury play a key role. This case report aimed at showing a possible conservative treatment after complicated tooth fracture that consisted of partial pulpotomy followed by adhesive reattachment of the tooth fragment using a technique based on heated resin composite. Such a specific procedure represents a conservative approach to traumatic coronal lesions, providing a suitable opportunity to maintain the tooth vitality, aesthetics, and function. Indeed, reattachment of tooth fragment using a composite/adhesive is a simple technique to achieve excellent results in terms of aesthetic and function.
Collapse
Affiliation(s)
- Mateusz Radwanski
- Department of Endodontics Chair, Conservative Dentistry, Endodontics Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
| | | | - Monika Lukomska-Szymanska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska Str., 92-213 Lodz, Poland
- Correspondence: (M.L.-S.); (S.S.); Tel.: +48-426-757461 (M.L.-S.)
| | - Arlinda Luzi
- Group of Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Salvatore Sauro
- Group of Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
- Department of Therapeutic Dentistry, I. M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
- Correspondence: (M.L.-S.); (S.S.); Tel.: +48-426-757461 (M.L.-S.)
| |
Collapse
|
7
|
Antimicrobial Activity of Calcium Silicate-Based Dental Materials: A Literature Review. Antibiotics (Basel) 2021; 10:antibiotics10070865. [PMID: 34356786 PMCID: PMC8300656 DOI: 10.3390/antibiotics10070865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022] Open
Abstract
Endodontic biomaterials have significantly improved dental treatment techniques in several aspects now that they can be used for vital pulp treatments, as temporary intracanal medication, in definitive fillings, in apical surgeries, and for regenerative procedures. Calcium silicate-based cement is a class of dental material that is used in endodontics in direct contact with the dental structures, connective tissue, and bone. Because the material interacts with biological tissues and stimulates biomineralization processes, its properties are of major importance. The main challenge in endodontic treatments is the elimination of biofilms that are present in the root canal system anatomical complexities, as it remains even after chemical-mechanical preparation and disinfection procedures. Thus, an additional challenge for these biomaterials is to exert antimicrobial activity while maintaining their biological properties in parallel. This article reviews the literature for studies considering the antimicrobial properties of calcium silicate-based dental biomaterials used in endodontic practice. Considering the reviewed studies, it can be affirmed that the reduced antimicrobial effect exhibited by calcium silicate-based endodontic materials clearly emphasizes that all clinical procedures prior to their use must be carefully performed. Future studies for the evaluation of these materials, and especially newly proposed materials, under poly-microbial biofilms associated with endodontic diseases will be necessary.
Collapse
|
8
|
Pelepenko LE, Saavedra F, Antunes TBM, Bombarda GF, Gomes BPFDA, Zaia AA, Marciano MA. Investigation of a modified hydraulic calcium silicate-based material - Bio-C Pulpo. Braz Oral Res 2021; 35:e077. [PMID: 34161414 DOI: 10.1590/1807-3107bor-2021.vol35.0077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
This study evaluated the physicochemical, biological, and antimicrobial properties of a new hydraulic calcium silicate-based modified material, and compared it with MTA Repair HP and MTA Angelus. The materials were assessed regarding color luminosity (L), color change, radiopacity, setting time, and ISO 6876:2012 linear flow. Volumetric filling and volume change were evaluated using microcomputed-tomography (µCT). Chemical characterization after 28 days in Hank's Balanced Salt Solution (HBSS) and pH analysis were also assessed. Biological characterization of cytotoxicity and microbiological assessment were also undertaken. Shapiro-Wilk, ANOVA, Levene and post hoc analyses with Bonferroni correction were performed, adopting a 5% significance level (p <0.05). Bio-C Pulpo exhibited the highest L values after 90 days. All tested materials demonstrated color change during the analyses, and had radiopacity above 5 mm Al. MTA Repair HP set faster than Bio-C Pulpo, whereas the latter had the highest linear flow. MTA Repair HP had the highest volumetric filling in µCT analysis. Bio-C Pulpo showed the highest alkalinity during all tested periods, and the highest volumetric loss (above 9%), in comparison with MTA Repair HP and MTA Angelus. Bio-C Pulpo did not form calcium hydroxide after hydration. MTA Repair HP demonstrated the highest cytocompatibility, and Bio-C Pulpo, the highest cytotoxicity. No inhibition halos were observed for any material, and similar higher turbidity values were seen after direct contact. Composition additives used in Bio-C Pulpo modified its properties, and both the absence of calcium hydroxide deposition after hydration, and the related cytotoxicity of this material are of particular concern.
Collapse
Affiliation(s)
- Lauter Eston Pelepenko
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Restorative Dentistry, Piracicaba, SP, Brazil
| | - Flávia Saavedra
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Restorative Dentistry, Piracicaba, SP, Brazil
| | - Thiago Bessa Marconato Antunes
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Restorative Dentistry, Piracicaba, SP, Brazil
| | - Gabriela Fernanda Bombarda
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Restorative Dentistry, Piracicaba, SP, Brazil
| | | | - Alexandre Augusto Zaia
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Restorative Dentistry, Piracicaba, SP, Brazil
| | - Marina Angélica Marciano
- Universidade Estadual de Campinas - Unicamp, Piracicaba Dental School, Department of Restorative Dentistry, Piracicaba, SP, Brazil
| |
Collapse
|