1
|
de Araújo CN, Santiago PB, Causin Vieira G, Silva GDS, Moura RP, Bastos IMD, de Santana JM. The biotechnological potential of proteases from hematophagous arthropod vectors. Front Cell Infect Microbiol 2023; 13:1287492. [PMID: 37965257 PMCID: PMC10641018 DOI: 10.3389/fcimb.2023.1287492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Carla Nunes de Araújo
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
- Faculty of Ceilândia, University of Brasília, Brasília, DF, Brazil
| | - Paula Beatriz Santiago
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Giulia Causin Vieira
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Gabriel dos Santos Silva
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Renan Pereira Moura
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Izabela Marques Dourado Bastos
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Jaime Martins de Santana
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
2
|
Menezes-Silva L, Catarino JDS, de Faria LC, Pizzolante BC, Andrade-Silva LE, da Silva MV, Rodrigues V, Sales-Campos H, Oliveira CJF. Hemolymph of triatomines presents fungistatic activity against Cryptococcus neoformans and improves macrophage function through MCP-I/TNF-α increase. J Venom Anim Toxins Incl Trop Dis 2022; 28:e20210124. [PMID: 35910486 PMCID: PMC9302513 DOI: 10.1590/1678-9199-jvatitd-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Background Triatomines are blood-feeding arthropods belonging to the subfamily Triatominae (Hemiptera; Reduviidae), capable of producing immunomodulatory and water-soluble molecules in their hemolymph, such as antimicrobial peptides (AMPs). In this work, we evaluated the antifungal and immunomodulatory activity of the hemolymph of Meccus pallidipennis (MPH) and Rhodnius prolixus (RPH) against Cryptococcus neoformans. Methods We assessed the activity of the hemolymph of both insects on fungal growth by a minimum inhibitory concentration (MIC) assay. Further, RAW 264.7 macrophages were cultivated with hemolymph and challenged with C. neoformans. Then, their phagocytic and killing activities were assessed. The cytokines MCP-1, IFN-γ, TNF-α, IL-10, IL-12, and IL-6 were measured in culture supernatants 4- and 48-hours post-infection. Results Both hemolymph samples directly affected the growth rate of the fungus in a dose-dependent manner. Either MPH or RPH was capable of inhibiting fungal growth by at least 70%, using the lowest dilution (1:20). Treatment of RAW 264.7 macrophages with hemolymph of both insects was capable of increasing the production of MCP-I and TNF-α. In addition, when these cells were stimulated with hemolymph in the presence of C. neoformans, a 2- and a 4-fold increase in phagocytic rate was observed with MPH and RPH, respectively, when compared to untreated cells. For the macrophage killing activity, MPH decreased in approximately 30% the number of viable yeasts inside the cells compared to untreated control; however, treatment with RPH could not reduce the total number of viable yeasts. MPH was also capable of increasing MHC-II expression on macrophages. Regarding the cytokine production, MCP-I and TNF-α, were increased in the supernatant of macrophages treated with both hemolymphs, 4 and 48 hours after stimulation. Conclusion These results suggested that hemolymph of triatomines may represent a source of molecules capable of presenting antifungal and immunomodulatory activity in macrophages during fungal infection.
Collapse
Affiliation(s)
- Luísa Menezes-Silva
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
- Department of Immunology, Institute of Biomedical Sciences,
University of São Paulo (USP), São Paulo, SP, Brazil
| | - Jonatas da Silva Catarino
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
- Department of Comparative Medicine, Yale University School of
Medicine, New Haven, CT, United States
| | - Laura Caroline de Faria
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
- Department of Immunology, Institute of Biomedical Sciences,
University of São Paulo (USP), São Paulo, SP, Brazil
| | - Bárbara Cristina Pizzolante
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
- Department of Immunology, Institute of Biomedical Sciences,
University of São Paulo (USP), São Paulo, SP, Brazil
| | - Leonardo Eurípedes Andrade-Silva
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marcos Vinicius da Silva
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Virmondes Rodrigues
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Helioswilton Sales-Campos
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
- Department of Biosciences and Technology, Institute of Tropical
Pathology and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Bioinformatics, Department of
Microbiology, Immunology and Parasitology, Institute of Biological and Natural
Sciences, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
3
|
Rocha FF, Gazzinelli-Guimarães PH, Soares AC, Lourdes RA, Estevão LRM, Rachid MA, Bueno LL, Gontijo NF, Pereira MH, Sant'Anna MRV, Natividade UA, Fujiwara RT, Araujo RN. Effect of Triatoma infestans saliva on mouse immune system cells: The role of the pore-forming salivary protein trialysin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103739. [PMID: 35149206 DOI: 10.1016/j.ibmb.2022.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Triatoma infestans is one of the most important vectors of Trypanosoma cruzi in the Americas. While feeding, they release large amounts of saliva that will counteract the host's responses triggered at the bite site. Despite the various activities described on T. infestans saliva, little is known about its effect on the modulation of the host's immune system. This work aimed to describe the effects of T. infestans saliva on cells of the mouse immune system and access the role in hematophagy. The effect of saliva or salivary gland extract (SGE) was evaluated in vivo and in vitro by direct T. infestans feeding on mice or using different biological assays. Mice that were submitted to four bites by three specimens of T. infestans had their anti-saliva IgG serum levels approximately 2.4 times higher than controls, but no change in serum IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, and TNF-α levels was observed. No macroscopic alterations were seen at the bite site, but an accumulation of mononuclear and polymorphonuclear cells shortly after the bite and 24 h later were observed in histological cuts. At low concentrations (up to ∼5 μg/well), SGE induced TNF-α production by macrophages and spleen cells, IFN-γ and IL-10 by spleen cells and NO by macrophages. However, at higher concentrations (10 and 20 μg/well), viability of macrophages and spleen cells was reduced by SGE, reducing the production of NO and cytokines (except TNF-α). The salivary trialysin was the main inducer of cell death as macrophage viability and NO production was restored in assays carried out with SGE from trialysin knockdown insects. The reduction of the salivary trialysin by RNAi affected the total ingestion rate, the weight gain, and retarded the molt from second to the fifth instar of T. infestans nymphs fed on mice. The results show that T. infestans saliva modulates the activity of cells of the host immune system and trialysin is an important salivary molecule that reduces host cells viability and impacts the feeding performance of T. infestans feeding on live hosts.
Collapse
Affiliation(s)
- Fernanda F Rocha
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pedro H Gazzinelli-Guimarães
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriana C Soares
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo A Lourdes
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lígia R M Estevão
- Laboratory of Cellular and Molecular Pathology, Department of Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Milene A Rachid
- Laboratory of Cellular and Molecular Pathology, Department of Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian L Bueno
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nelder F Gontijo
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Marcos H Pereira
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mauricio R V Sant'Anna
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ulisses A Natividade
- Laboratory of Hematophagous Arthopods, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo T Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo N Araujo
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil; Laboratory of Hematophagous Arthopods, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
4
|
Praça YR, Santiago PB, Charneau S, Mandacaru SC, Bastos IMD, Bentes KLDS, Silva SMM, da Silva WMC, da Silva IG, de Sousa MV, Soares CMDA, Ribeiro JMC, Santana JM, de Araújo CN. An Integrative Sialomic Analysis Reveals Molecules From Triatoma sordida (Hemiptera: Reduviidae). Front Cell Infect Microbiol 2022; 11:798924. [PMID: 35047420 PMCID: PMC8762107 DOI: 10.3389/fcimb.2021.798924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Triatomines have evolved salivary glands that produce versatile molecules with various biological functions, including those leading their interactions with vertebrate hosts’ hemostatic and immunological systems. Here, using high-throughput transcriptomics and proteomics, we report the first sialome study on the synanthropic triatomine Triatoma sordida. As a result, 57,645,372 reads were assembled into 26,670 coding sequences (CDS). From these, a total of 16,683 were successfully annotated. The sialotranscriptomic profile shows Lipocalin as the most abundant protein family within putative secreted transcripts. Trialysins and Kazal-type protease inhibitors have high transcript levels followed by ubiquitous protein families and enzyme classes. Interestingly, abundant trialysin and Kazal-type members are highlighted in this triatomine sialotranscriptome. Furthermore, we identified 132 proteins in T. sordida salivary gland soluble extract through LC-MS/MS spectrometry. Lipocalins, Hemiptera specific families, CRISP/Antigen-5 and Kazal-type protein inhibitors proteins were identified. Our study provides a comprehensive description of the transcript and protein compositions of the salivary glands of T. sordida. It significantly enhances the information in the Triatominae sialome databanks reported so far, improving the understanding of the vector’s biology, the hematophagous behaviour, and the Triatominae subfamily’s evolution.
Collapse
Affiliation(s)
- Yanna Reis Praça
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Paula Beatriz Santiago
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Samuel Coelho Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Kaio Luís da Silva Bentes
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | | | | | | | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - José Marcos Chaves Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Jaime Martins Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | - Carla Nunes de Araújo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, University of Brasilia, Brasilia, Brazil.,Programa Pós-Graduação em Ciências Médicas, Faculty of Medicine, University of Brasilia, Brasilia, Brazil.,Faculty of Ceilândia, University of Brasilia, Brasilia, Brazil
| |
Collapse
|