1
|
Liu H, Liu W, Ai M, Hao X, Zhang Q, Ren J, Zhang K. Effects of β-mannanase supplementation on productive performance, inflammation, energy metabolism, and cecum microbiota composition of laying hens fed with reduced-energy diets. Poult Sci 2024; 103:103521. [PMID: 38367470 PMCID: PMC10882124 DOI: 10.1016/j.psj.2024.103521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024] Open
Abstract
The objective of this study is to investigate the beneficial effects and underlying mechanism of dietary β-mannanase supplementation on the productive performance of laying hens fed with metabolic energy (ME)-reduced diets. A total of 448 Hy-Line gray laying hens were randomly assigned to seven groups. Each group had 8 replicates with 8 hens. The groups included a control diet (CON) with a ME of 2750 kcal/Kg, diets reduced by 100 kcal/Kg or 200 kcal/Kg ME (ME_100 or ME_200), and diets with 0.15 g/Kg or 0.2 g/Kg β-mannanase (ME_100+β-M_0.15, ME_100+β-M_0.2, ME_200+β-M_0.15, and ME_200+β-M_0.2). The productive performance, egg quality, intestinal morphology, inflammatory response, mRNA expression related to the Nuclear factor kappa B (NF-κB) and AMPK pathway, and cecum microbiome were evaluated in this study. ME-reduced diets negatively impacted the productive performance of laying hens. However, supplementation with β-mannanase improved FCR, decreased ADFI, and restored average egg weight to the level of the CON group. ME-reduced diets increased the levels of interleukin-1β (IL-1β) and IL-6 while decreasing the levels of IL-4 and IL-10 in the jejunum of laying hens. However, dietary β-mannanase supplementation improved jejunum morphology, reduced pro-inflammatory cytokine concentrations, and increased levels of anti-inflammatory factors in laying hens fed with ME-reduced diets. The mRNA levels of IL-6, IFN-γ, TLR4, MyD88, and NF-κB in the jejunum of ME-reduced diets were significantly higher than that in CON, dietary β-mannanase supplementation decreased these genes expression in laying hens fed with ME-reduced diets. Moreover, dietary β-mannanase supplementation also decreased the mRNA levels of AMPKα and AMPKγ, and increased the abundance of mTOR in the jejunum of laying hens fed with ME-reduced diets. Cecum microbiota analysis revealed that dietary β-mannanase increased the abundance of various beneficial bacteria (e.g., g_Pseudoflavonifractor, g_Butyricicoccus, and f_Lactobacillaceae) in laying hens fed with ME-reduced diets. In conclusion, dietary β-mannanase supplementation could improve the productive performance of laying hens fed with a ME-reduced diet by improving intestinal morphology, alleviating intestinal inflammation, changing energy metabolism-related signaling pathways, and increasing cecum-beneficial microbiota.
Collapse
Affiliation(s)
- Huawei Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Weiyong Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Mingming Ai
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaojing Hao
- Qingdao Animal Husbandry Workstation (Qingdao Research Institute of Husbandry and Veterinary), Qingdao 266100, China
| | - Qian Zhang
- Qingdao Animal Husbandry Workstation (Qingdao Research Institute of Husbandry and Veterinary), Qingdao 266100, China
| | - Jingle Ren
- Qingdao Animal Husbandry Workstation (Qingdao Research Institute of Husbandry and Veterinary), Qingdao 266100, China
| | - Kai Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
2
|
Carvalho CL, Andretta I, Galli GM, Bastos Stefanello T, Camargo NDOT, Mendes RE, Pelisser G, Balamuralikrishnan B, Melchior R, Kipper M. Dietary supplementation with β-mannanase and probiotics as a strategy to improve laying hen performance and egg quality. Front Vet Sci 2023; 10:1229485. [PMID: 38116507 PMCID: PMC10728292 DOI: 10.3389/fvets.2023.1229485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023] Open
Abstract
The objective of this study was to assess the impact of β-mannanase and probiotic on the performance, serum biochemistry, gut morphometric traits, and fresh egg quality of laying hens. A total of 120 cages, housing light-weight laying hens (36 weeks old), were randomly assigned to four different treatments. These treatments included a control group fed non-supplemented diets; diets supplemented with 300 g/ton of beta-mannanase; diets supplemented with 50 g/ton of probiotic; or diets containing both 300 g/ton of β-mannanase and 50 g/ton of probiotics. The trial spanned a duration of 26 weeks and was divided into three productive phases, each lasting 28 days. The inclusion of β-mannanase resulted in a significant improvement in the laying rate by 11% (p < 0.05) compared to the control treatment. Similarly, the addition of probiotics also enhanced the laying rate by 7% (p < 0.05), as well as the supplementation with combined additives (11.5%). Combined additives showed an increase in egg masses, and additive association improved by 13.9% (p < 0.001) in contrast to the control treatment. Overall, β-mannanase and combined additives used during the supplementation period resulted in improvements in the weight of fresh eggs. These benefits were observed after a period of 14 weeks without supplementation (p < 0.05). Furthermore, significant differences were observed in the serum biochemistry and egg masses of birds that were fed diets containing both additives (β-mannanase + probiotics) compared to the control group. Parameters such as uric acid, total cholesterol, and triglycerides displayed notable variations. The villi height: crypt depth showed differences with combined additives (β-mannanase + probiotics). The β-mannanase improved specific gravity, yolk height, length, and pH, and yolk color traits compared to the control treatment. The use of probiotics helped to improve yolk height, pH, and color score. Besides, combined additives (β-mannanase + probiotics) improve yolk height, length, weight, pH, and better traits in yolk color. Hence, incorporating β-mannanase and probiotics into laying hen diets proves to be a highly effective strategy for enhancing laying rate and overall health status, while simultaneously elevating certain quality attributes of fresh eggs.
Collapse
Affiliation(s)
- Camila Lopes Carvalho
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ines Andretta
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela Miotto Galli
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thais Bastos Stefanello
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Giovanna Pelisser
- Laboratory of Veterinary Pathology, Instituto Federal Catarinense, Concórdia, Brazil
| | | | - Raquel Melchior
- Department of Animal Science, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | |
Collapse
|
3
|
Kiarie EG, Steelman S, Martinez, M, Livingston K. Significance of single β-mannanase supplementation on performance and energy utilization in broiler chickens, laying hens, turkeys, sows, and nursery-finish pigs: a meta-analysis and systematic review. Transl Anim Sci 2021; 5:txab160. [PMID: 34888489 PMCID: PMC8651174 DOI: 10.1093/tas/txab160] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/17/2021] [Indexed: 11/12/2022] Open
Abstract
This review will give a brief description of β-mannans, abundance in feedstuffs, utility of supplemental feed β-mannanase, and subsequent animal responses. Soybean products and co-products of processing palm, coconut, and guar seeds are the major sources of β-mannans in poultry and livestock feed. β-Mannans are linear polymers of mannose residues linked by β-1,4 glycosidic bonds and their ingestion elicit undesirable and metabolically costly responses. Web of Science was searched to retrieve published studies for meta-analyses of the impact of supplemental β-mannanase on performance and digestibility in pigs and poultry. The mean difference (MD) between β-mannanase and control on average daily gain (g/d) was +0.23 (P = 0.013; 95% CI of 0.05; 0.41), +10.8 g/d (P = 0.0005; 95% CI of 6.6; 15.0 g/d), and +20.68 (P < 0.000; 95% CI of 17.15; 24.20 g/d) for broiler chickens, nursery pigs, and grow-finish pigs, respectively. The MD on β-mannanase improvement on feed conversion (FCR) was -0.02 (P < 0.0001) with 95% CI (-0.03; -0.02) suggesting a 2-to-3-point FCR improvement in broiler chickens. β-Mannanase improvement on gain to feed (G:F) was +13.8 g/kg (P = 0.027; 2.1; 25.4 g/kg) and +8.77 g/kg (6.32; 11.23 g/kg) in nursery and grow-finish pigs, respectively. β-Mannanase improved apparent metabolizable energy by 47 kcal/kg (P = 0.0004) with 95% CI (28.8; 65.7 kcal/kg) in broiler chickens. The improvement of gross energy digestibility in pigs was 1.08% unit with 95% CI (0.90; 1.26) translating to the release of between 30.6 and 42.8 kcal/kg of digestible energy. Although data were limited, β-mannanase improved egg production in laying hens linked to improved energy metabolism in laying hens linked to improved energy metabolism but had no impact on egg quality. Turkeys may be more adversely affected by β-mannans because of the high protein/amino acids requirements necessitating higher dietary inclusion of soybean meal. However, growth performance and feed efficiency responses of turkeys fed diets supplemented with β-mannanase were variable. In summary, β-mannanase supplementation improved performance linked to energy and nutrient utilization. However, the magnitude of response was variable within and between species indicating further application refinement is warranted to achieve consistent efficacy, and improved understanding of the functional contribution of β-mannans hydrolysis products.
Collapse
Affiliation(s)
- Elijah G Kiarie
- Department of Animal biosciences, University of Guelph, Guelph, ON, Canada
| | | | | | | |
Collapse
|