1
|
Russell JA, Gordon AC, Williams MD, Boyd JH, Walley KR, Kissoon N. Vasopressor Therapy in the Intensive Care Unit. Semin Respir Crit Care Med 2020; 42:59-77. [PMID: 32820475 DOI: 10.1055/s-0040-1710320] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After fluid administration for vasodilatory shock, vasopressors are commonly infused. Causes of vasodilatory shock include septic shock, post-cardiovascular surgery, post-acute myocardial infarction, postsurgery, other causes of an intense systemic inflammatory response, and drug -associated anaphylaxis. Therapeutic vasopressors are hormones that activate receptors-adrenergic: α1, α2, β1, β2; angiotensin II: AG1, AG2; vasopressin: AVPR1a, AVPR1B, AVPR2; dopamine: DA1, DA2. Vasopressor choice and dose vary widely because of patient and physician practice heterogeneity. Vasopressor adverse effects are excessive vasoconstriction causing organ ischemia/infarction, hyperglycemia, hyperlactatemia, tachycardia, and tachyarrhythmias. To date, no randomized controlled trial (RCT) of vasopressors has shown a decreased 28-day mortality rate. There is a need for evidence regarding alternative vasopressors as first-line vasopressors. We emphasize that vasopressors should be administered simultaneously with fluid replacement to prevent and decrease duration of hypotension in shock with vasodilation. Norepinephrine is the first-choice vasopressor in septic and vasodilatory shock. Interventions that decrease norepinephrine dose (vasopressin, angiotensin II) have not decreased 28-day mortality significantly. In patients not responsive to norepinephrine, vasopressin or epinephrine may be added. Angiotensin II may be useful for rapid resuscitation of profoundly hypotensive patients. Inotropic agent(s) (e.g., dobutamine) may be needed if vasopressors decrease ventricular contractility. Dopamine has fallen to almost no-use recommendation because of adverse effects; angiotensin II is available clinically; there are potent vasopressors with scant literature (e.g., methylene blue); and the novel V1a agonist selepressin missed on its pivotal RCT primary outcome. In pediatric septic shock, vasopressors, epinephrine, and norepinephrine are recommended equally because there is no clear evidence that supports the use of one vasoactive agent. Dopamine is recommended when epinephrine or norepinephrine is not available. New strategies include perhaps patients will be started on several vasopressors with complementary mechanisms of action, patients may be selected for particular vasopressors according to predictive biomarkers, and novel vasopressors may emerge with fewer adverse effects.
Collapse
Affiliation(s)
- James A Russell
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony C Gordon
- Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College London, London, United Kingdom.,Department of Surgery and Cancer, Intensive Care Unit, Imperial College Healthcare NHS Trust, St Mary's Hospital, London, United Kingdom
| | - Mark D Williams
- Department of Medicine, Indiana University Health Methodist Hospital, Indiana University School of Medicine, Indianapolis, Indiana
| | - John H Boyd
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keith R Walley
- Department of Medicine, Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Critical Care Medicine, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Niranjan Kissoon
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Weiss SL, Peters MJ, Alhazzani W, Agus MSD, Flori HR, Inwald DP, Nadel S, Schlapbach LJ, Tasker RC, Argent AC, Brierley J, Carcillo J, Carrol ED, Carroll CL, Cheifetz IM, Choong K, Cies JJ, Cruz AT, De Luca D, Deep A, Faust SN, De Oliveira CF, Hall MW, Ishimine P, Javouhey E, Joosten KFM, Joshi P, Karam O, Kneyber MCJ, Lemson J, MacLaren G, Mehta NM, Møller MH, Newth CJL, Nguyen TC, Nishisaki A, Nunnally ME, Parker MM, Paul RM, Randolph AG, Ranjit S, Romer LH, Scott HF, Tume LN, Verger JT, Williams EA, Wolf J, Wong HR, Zimmerman JJ, Kissoon N, Tissieres P. Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-Associated Organ Dysfunction in Children. Pediatr Crit Care Med 2020; 21:e52-e106. [PMID: 32032273 DOI: 10.1097/pcc.0000000000002198] [Citation(s) in RCA: 504] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To develop evidence-based recommendations for clinicians caring for children (including infants, school-aged children, and adolescents) with septic shock and other sepsis-associated organ dysfunction. DESIGN A panel of 49 international experts, representing 12 international organizations, as well as three methodologists and three public members was convened. Panel members assembled at key international meetings (for those panel members attending the conference), and a stand-alone meeting was held for all panel members in November 2018. A formal conflict-of-interest policy was developed at the onset of the process and enforced throughout. Teleconferences and electronic-based discussion among the chairs, co-chairs, methodologists, and group heads, as well as within subgroups, served as an integral part of the guideline development process. METHODS The panel consisted of six subgroups: recognition and management of infection, hemodynamics and resuscitation, ventilation, endocrine and metabolic therapies, adjunctive therapies, and research priorities. We conducted a systematic review for each Population, Intervention, Control, and Outcomes question to identify the best available evidence, statistically summarized the evidence, and then assessed the quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation approach. We used the evidence-to-decision framework to formulate recommendations as strong or weak, or as a best practice statement. In addition, "in our practice" statements were included when evidence was inconclusive to issue a recommendation, but the panel felt that some guidance based on practice patterns may be appropriate. RESULTS The panel provided 77 statements on the management and resuscitation of children with septic shock and other sepsis-associated organ dysfunction. Overall, six were strong recommendations, 52 were weak recommendations, and nine were best-practice statements. For 13 questions, no recommendations could be made; but, for 10 of these, "in our practice" statements were provided. In addition, 49 research priorities were identified. CONCLUSIONS A large cohort of international experts was able to achieve consensus regarding many recommendations for the best care of children with sepsis, acknowledging that most aspects of care had relatively low quality of evidence resulting in the frequent issuance of weak recommendations. Despite this challenge, these recommendations regarding the management of children with septic shock and other sepsis-associated organ dysfunction provide a foundation for consistent care to improve outcomes and inform future research.
Collapse
Affiliation(s)
- Scott L Weiss
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Mark J Peters
- Great Ormond Street Hospital for Children, London, United Kingdom
| | - Waleed Alhazzani
- Department of Medicine, Division of Critical Care, and Department of Health Research Methods and Impact, McMaster University, Hamilton, ON, Canada
| | - Michael S D Agus
- Department of Pediatrics (to Dr. Agus), Department of Anesthesiology, Critical Care and Pain (to Drs. Mehta and Randolph), Boston Children's Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Luregn J Schlapbach
- Paediatric Critical Care Research Group, The University of Queensland and Queensland Children's Hospital, Brisbane, QLD, Australia
| | - Robert C Tasker
- Department of Pediatrics (to Dr. Agus), Department of Anesthesiology, Critical Care and Pain (to Drs. Mehta and Randolph), Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Andrew C Argent
- Red Cross War Memorial Children's Hospital and University of Cape Town, Cape Town, South Africa
| | - Joe Brierley
- Great Ormond Street Hospital for Children, London, United Kingdom
| | | | | | | | | | - Karen Choong
- Department of Medicine, Division of Critical Care, and Department of Health Research Methods and Impact, McMaster University, Hamilton, ON, Canada
| | - Jeffry J Cies
- St. Christopher's Hospital for Children, Philadelphia, PA
| | | | - Daniele De Luca
- Paris South University Hospitals-Assistance Publique Hopitaux de Paris, Paris, France.,Physiopathology and Therapeutic Innovation Unit-INSERM U999, South Paris-Saclay University, Paris, France
| | - Akash Deep
- King's College Hospital, London, United Kingdom
| | - Saul N Faust
- University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | | | - Mark W Hall
- Nationwide Children's Hospital, Columbus, OH
| | | | | | | | - Poonam Joshi
- All India Institute of Medical Sciences, New Delhi, India
| | - Oliver Karam
- Children's Hospital of Richmond at VCU, Richmond, VA
| | | | - Joris Lemson
- Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Graeme MacLaren
- National University Health System, Singapore, and Royal Children's Hospital, Melbourne, VIC, Australia
| | - Nilesh M Mehta
- Department of Pediatrics (to Dr. Agus), Department of Anesthesiology, Critical Care and Pain (to Drs. Mehta and Randolph), Boston Children's Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Akira Nishisaki
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | | | | | - Adrienne G Randolph
- Department of Pediatrics (to Dr. Agus), Department of Anesthesiology, Critical Care and Pain (to Drs. Mehta and Randolph), Boston Children's Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Lyvonne N Tume
- University of the West of England, Bristol, United Kingdom
| | - Judy T Verger
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,College of Nursing, University of Iowa, Iowa City, IA
| | | | - Joshua Wolf
- St. Jude Children's Research Hospital, Memphis, TN
| | | | | | - Niranjan Kissoon
- British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Pierre Tissieres
- Paris South University Hospitals-Assistance Publique Hopitaux de Paris, Paris, France.,Institute of Integrative Biology of the Cell-CNRS, CEA, Univ Paris Sud, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Fuhrman D, Crowley K, Vetterly C, Hoshitsuki K, Koval A, Carcillo J. Medication Use as a Contributor to Fluid Overload in the PICU: A Prospective Observational Study. J Pediatr Intensive Care 2017; 7:69-74. [PMID: 31073473 DOI: 10.1055/s-0037-1604422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/24/2017] [Indexed: 01/20/2023] Open
Abstract
In this prospective observational study, we explored the association of daily fluid intake from medication use with fluid overload in 75 children beginning 24 hours after intubation. The mean percent daily fluid intake from medications was 29% in the overall cohort. Excess intake and inadequate output contributed significantly to fluid overload. In the 28 patients who became ≥10% fluid overloaded, the mean percent daily fluid intake from medications was 34%, but just 23% in the patients who did not. Awareness of volume contribution and maximized concentration of parenteral medications when able may lessen the burden of fluid overload.
Collapse
Affiliation(s)
- Dana Fuhrman
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Kelli Crowley
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Carol Vetterly
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Keito Hoshitsuki
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Alaina Koval
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Joseph Carcillo
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
5
|
Ferlini R, Pinheiro FO, Andreolio C, Carvalho PRA, Piva JP. Characteristics and progression of children with acute viral bronchiolitis subjected to mechanical ventilation. Rev Bras Ter Intensiva 2017; 28:55-61. [PMID: 27096677 PMCID: PMC4828092 DOI: 10.5935/0103-507x.20160003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/05/2015] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To analyze the characteristics of children with acute viral bronchiolitis subjected to mechanical ventilation for three consecutive years and to correlate their progression with mechanical ventilation parameters and fluid balance. METHODS Longitudinal study of a series of infants (< one year old) subjected to mechanical ventilation for acute viral bronchitis from January 2012 to September 2014 in the pediatric intensive care unit. The children's clinical records were reviewed, and their anthropometric data, mechanical ventilation parameters, fluid balance, clinical progression, and major complications were recorded. RESULTS Sixty-six infants (3.0 ± 2.0 months old and with an average weight of 4.7 ± 1.4kg) were included, of whom 62% were boys; a virus was identified in 86%. The average duration of mechanical ventilation was 6.5 ± 2.9 days, and the average length of stay in the pediatric intensive care unit was 9.1 ± 3.5 days; the mortality rate was 1.5% (1/66). The peak inspiratory pressure remained at 30cmH2O during the first four days of mechanical ventilation and then decreased before extubation (25 cmH2O; p < 0.05). Pneumothorax occurred in 10% of the sample and extubation failure in 9%, which was due to upper airway obstruction in half of the cases. The cumulative fluid balance on mechanical ventilation day four was 402 ± 254mL, which corresponds to an increase of 9.0 ± 5.9% in body weight. Thirty-seven patients (56%) exhibited a weight gain of 10% or more, which was not significantly associated with the ventilation parameters on mechanical ventilation day four, extubation failure, duration of mechanical ventilation or length of stay in the pediatric intensive care unit. CONCLUSION The rate of mechanical ventilation for acute viral bronchiolitis remains constant, being associated with low mortality, few adverse effects, and positive cumulative fluid balance during the first days. Better fluid control might reduce the duration of mechanical ventilation.
Collapse
Affiliation(s)
- Roberta Ferlini
- Unidade de Terapia Intensiva Pediátrica, Hospital da Criança Santo Antônio, Porto Alegre, RS, Brazil
| | | | - Cinara Andreolio
- Unidade de Terapia Intensiva Pediátrica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | | | - Jefferson Pedro Piva
- Departamento de Pediatria, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Yang XM, Tu GW, Gao J, Wang CS, Zhu DM, Shen B, Liu L, Luo Z. A comparison of preemptive versus standard renal replacement therapy for acute kidney injury after cardiac surgery. J Surg Res 2016; 204:205-12. [PMID: 27451888 DOI: 10.1016/j.jss.2016.04.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/05/2016] [Accepted: 04/29/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND The optimal timing of renal replacement therapy (RRT) initiation in patients undergoing cardiac surgery remains controversial. This study aimed to determine whether preemptive RRT or standard RRT was associated with hospital mortality in cardiac surgical patients with acute kidney injury (AKI). METHODS Data were retrospectively collected from patients who underwent cardiac surgery and experienced postoperative AKI requiring RRT at Zhongshan Hospital of Fudan University from September 1, 2006 to December 31, 2013. The patients were divided into two groups according to the RRT strategy applied. RESULTS A total of 213 patients were enrolled in this study; 59 patients were categorized into the preemptive RRT group and 154 into the standard RRT group. The preemptive RRT group exhibited significantly lower mortality (33.90% versus 51.95%, P = 0.018) and time to recovery of renal function than the standard RRT group (15.34 ± 14.46 versus 22.88 ± 14.08 d, P = 0.022). Moreover, the preemptive RRT group showed significantly lower serum creatinine levels and higher proportions of recovery of renal function and weaning from RRT at death or discharge than the standard RRT group. There was no significant difference in the duration of mechanical ventilation, RRT, intensive care unit stay, or hospital stay between the two groups. CONCLUSIONS In patients after cardiac surgery, preemptive RRT was associated with lower hospital mortality and faster and more frequent recovery of renal function than standard RRT. However, preemptive RRT did not affect other patient-centered outcomes including mechanical ventilation time, RRT time, or length of intensive care unit or hospital stay.
Collapse
Affiliation(s)
- Xiao-Mei Yang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, Shanghai, P. R. China; Center of Clinical Epidemiology and Evidence-Based Medicine, Fudan University, Shanghai, P. R. China
| | - Chun-Sheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Du-Ming Zhu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Lan Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
| |
Collapse
|