1
|
Ma X, Zhou F, Yang D, Chen Y, Li M, Wang P. miRNA Detection for Prostate Cancer Diagnosis by miRoll-Cas: miRNA Rolling Circle Transcription for CRISPR-Cas Assay. Anal Chem 2023; 95:13220-13226. [PMID: 37609704 DOI: 10.1021/acs.analchem.3c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Micro-RNA (miRNA) emerges as a promising type of biomarker for cancer diagnosis. There is an urgent need for developing rapid, convenient, and precise miRNA detection methods that may be conducted with limited laboratory facilities, especially in underdeveloped areas. Herein, we developed a miRNA detection method termed miRoll-Cas, where miRNA is first amplified by rolling circle transcription and then subject to CRISPR-Cas13a assay. Using miRoll-Cas, we realized the sensitive detection of multiple cancer-relevant miRNA markers (miR21, miR141, and Let7b) and specifically identified other variants of the Let7 family, which can accurately discriminate prostate cancer patients from healthy people. We envision that miRoll-Cas may be readily translated to clinical applications in the diagnosis of a variety of diseases beyond cancer.
Collapse
Affiliation(s)
- Xiaowei Ma
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fei Zhou
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Donglei Yang
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yun Chen
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Department of Laboratory Medicine, Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Center for DNA Information Storage, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
2
|
Maurin M, Wyczółkowska M, Sawicka A, Sikora AE, Karczmarczyk U, Janota B, Radzik M, Kłudkiewicz D, Pijarowska-Kruszyna J, Jaroń A, Wojdowska W, Garnuszek P. [ 99mTc]Tc-PSMA-T4-Novel SPECT Tracer for Metastatic PCa: From Bench to Clinic. Molecules 2022; 27:7216. [PMID: 36364046 PMCID: PMC9658561 DOI: 10.3390/molecules27217216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 01/14/2024] Open
Abstract
Despite significant advances in nuclear medicine for diagnosing and treating prostate cancer (PCa), research into new ligands with increasingly better biological properties is still ongoing. Prostate-specific membrane antigen (PSMA) ligands show great potential as radioisotope carriers for the diagnosis and therapy of patients with metastatic PCa. PSMA is expressed in most types of prostate cancer, and its expression is increased in poorly differentiated, metastatic, and hormone-refractory cancers; therefore, it may be a valuable target for the development of radiopharmaceuticals and radioligands, such as urea PSMA inhibitors, for the precise diagnosis, staging, and treatment of prostate cancer. Four developed PSMA-HYNIC inhibitors for technetium-99m labeling and subsequent diagnosis were subjected to preclinical in vitro and in vivo studies to evaluate and compare their diagnostic properties. Among the studied compounds, the PSMA-T4 (Glu-CO-Lys-L-Trp-4-Amc-HYNIC) inhibitor showed the best biological properties for the diagnosis of PCa metastases. [99mTc]Tc-PSMA-T4 also showed effectiveness in single-photon emission computed tomography (SPECT) studies in humans, and soon, its usefulness will be extensively evaluated in phase 2/3 clinical trials.
Collapse
Affiliation(s)
- Michał Maurin
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland
| | | | | | | | | | | | | | | | | | | | | | - Piotr Garnuszek
- National Centre for Nuclear Research, Radioisotope Centre POLATOM, 05-400 Otwock, Poland
| |
Collapse
|
3
|
Prieto‐Vila M, Usuba W, Yoshioka Y, Takeshita F, Yoshiike M, Sasaki H, Yamamoto Y, Kikuchi E, Ochiya T. High-grade bladder cancer cells secrete extracellular vesicles containing miRNA-146a-5p and promotes angiogenesis. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e47. [PMID: 38939052 PMCID: PMC11080795 DOI: 10.1002/jex2.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/23/2022] [Accepted: 06/15/2022] [Indexed: 06/29/2024]
Abstract
Recurrence is one of the major issues in bladder cancer (BCa). Novel technologies, such as the detection of microRNAs carried by extracellular vesicles (EVs) in urine, have been proposed as biomarkers for detecting recurrence in BCa. Although the usefulness of microRNAs in body fluids from cancer patients has been reported, it is also known that they play essential roles in cancer progression. We previously proposed miR-146a-5p as a prognostic marker in BCa, since its urinary expression was associated with grade and tumour depth. However, the specific mechanisms of miR-146a-5p remain unclear. Here, we show the proangiogenic effects of miR-146a-5p secreted by high-grade BCa cells. The urinary miR-146a-5p level was higher in patients with high-grade BCa than in those with low-grade BCa. Similarly, tumours generated by miR-146a-overexpressing BCa cells in mice grew rapidly with high levels of angiogenesis. BCa-derived EV treatment promoted the proliferation of endothelial cells via the inhibition of the demethylase TET2 and the subsequent increase in its downstream target c-Myc. These findings demonstrate that secreted miR-146a-5p contributes to cancer progression by promoting angiogenesis. Therefore, miRNAs in EVs may become not only a diagnostic tool but also a target molecule for therapy.
Collapse
Affiliation(s)
- Marta Prieto‐Vila
- Department of Molecular and Cellular Medicine, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Wataru Usuba
- Department of UrologySt. Marianna University School of MedicineKawasakiJapan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| | - Fumitaka Takeshita
- Division of Fundamental Innovated OncologyNational Cancer Center Research InstitutesTokyoJapan
| | - Miki Yoshiike
- Department of UrologySt. Marianna University School of MedicineKawasakiJapan
| | - Hideo Sasaki
- Department of UrologySt. Marianna University School of MedicineKawasakiJapan
| | - Yusuke Yamamoto
- Laboratory of Integrative OncologyNational Cancer Center Research InstituteTokyoJapan
| | - Eiji Kikuchi
- Department of UrologySt. Marianna University School of MedicineKawasakiJapan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| |
Collapse
|
4
|
Hassan S, Blick T, Wood J, Thompson EW, Williams ED. Circulating Tumour Cells Indicate the Presence of Residual Disease Post-Castration in Prostate Cancer Patient-Derived Xenograft Models. Front Cell Dev Biol 2022; 10:858013. [PMID: 35493092 PMCID: PMC9043137 DOI: 10.3389/fcell.2022.858013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
Castrate-resistant prostate cancer (CRPC) is the lethal form of prostate cancer. Epithelial mesenchymal plasticity (EMP) has been associated with disease progression to CRPC, and prostate cancer therapies targeting the androgen signalling axis, including androgen deprivation therapy (ADT), promote EMP. We explored effects of castration on EMP in the tumours and circulating tumour cells (CTCs) of patient-derived xenograft (PDX)-bearing castrated mice using human-specific RT-qPCR assays and immunocytochemistry. Expression of prostate epithelial cell marker KLK3 was below detection in most tumours from castrated mice (62%, 23/37 mice), consistent with its known up-regulation by androgens. Endpoint tumour size after castration varied significantly in a PDX model-specific pattern; while most tumours were castration-sensitive (BM18, LuCaP70), the majority of LuCaP105 tumours continued to grow following castration. By contrast, LuCaP96 PDX showed a mixed response to castration. CTCs were detected in 33% of LuCaP105, 43% of BM18, 47% of LuCaP70, and 54% of LuCaP96 castrated mice using RPL32 mRNA measurement in plasma. When present, CTC numbers estimated using human RPL32 expression ranged from 1 to 458 CTCs per ml blood, similar to our previous observations in non-castrated mice. In contrast to their non-castrated counterparts, there was no relationship between tumour size and CTC burden in castrated mice. Unsupervised hierarchical clustering of the gene expression profiles of CTCs collected from castrated and non-castrated mice revealed distinct CTC sub-groups within the pooled population that were classified as having mesenchymal, epithelial, or EMP hybrid gene expression profiles. The epithelial signature was only found in CTCs from non-castrated mice. Hybrid and mesenchymal signatures were detected in CTCs from both castrated and non-castrated mice, with an emphasis towards mesenchymal phenotypes in castrated mice. Post-castration serum PSA levels were either below detection or very low for all the CTC positive samples highlighting the potential usefulness of CTCs for disease monitoring after androgen ablation therapy. In summary, our study of castration effects on prostate cancer PDX CTCs showed that CTCs were often detected in the castrate setting, even in mice with no palpable tumours, and demonstrated the superior ability of CTCs to reveal residual disease over the conventional clinical biomarker serum PSA.
Collapse
Affiliation(s)
- Sara Hassan
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Tony Blick
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Jack Wood
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
| | - Erik W. Thompson
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Elizabeth D. Williams
- Queensland University of Technology (QUT), Faculty of Health, School of Biomedical Sciences at Translational Research Institute (TRI), Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre, Queensland (APCRC-Q) and Queensland Bladder Cancer Initiative (QBCI), Brisbane, QLD, Australia
- *Correspondence: Elizabeth D. Williams,
| |
Collapse
|
5
|
Chen X, Ma Q, Liu Y, Li H, Liu Z, Zhang Z, Niu Y, Shang Z. Increased expression of CELSR3 indicates a poor prognostic factor for Prostate Cancer. J Cancer 2021; 12:1115-1124. [PMID: 33442409 PMCID: PMC7797646 DOI: 10.7150/jca.49567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Cadherin EGF LAG Seven-Pass G-Type Receptor 3 (CELSR3) gene was reported to be overexpressed in various human cancers and involved in the regulation of neurite-dependent neurite outgrowth and may play a role in tumor formation. However, the clinical significance of CELSR3 in prostate cancer (PCa) has not been fully studied. Methods: The expression of CELSR3 was detected by crossover analysis of the public datasets and cell lines. MTT assay and migration assay were performed to evaluate the cells' physiological functioning. Co-expressed genes and enrichment analysis was performed to investigate the biological significance of CELSR3 in PCa. Quantitative real-time polymerase chain reaction was used to detect the expression levels of hub genes (CENPE, CENPA, CDC20, NUF2, ESPL1, PLK1) related to CELSR3. Results: We found a significant increase in CELSR3 expression in PCa patients and cell lines. Furthermore, immunohistochemical analysis showed that CELSR3 protein expression was significantly more highly expressed in the PCa tissues compared to the non-cancerous PCa tissues. CELSR3 downregulation significantly suppressed cell proliferation and migration potential. CELSR3-related hub genes (CENPE, CENPA, CDC20, NUF2, ESPL1, PLK1) were selected and the functions of these hub genes showed that the function of CELSR3 was closely related to the cell cycle-related signaling pathways. The upregulation of CELSR3 mRNA expression in the PCa tissues significantly correlated with the presence of high serum PSA levels, high pathological stage, high Gleason score, short overall survival time and short disease-free survival time. Conclusion: Our data suggest that CELSR3 may play an important role in the progression of PCa. More importantly, an increase in CELSR3 expression may be indicative of poor disease-free survival and poor prognosis in PCa patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuanjie Niu
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The second hospital of Tianjin Medical University, Tianjin, 300211, China
| |
Collapse
|
6
|
Wang H, Peng R, Wang J, Qin Z, Xue L. Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenetics 2018; 10:59. [PMID: 29713393 PMCID: PMC5913875 DOI: 10.1186/s13148-018-0492-1] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are endogenous single-stranded non-coding small RNA molecules that can be secreted into the circulation and exist stably. They usually exhibit aberrant expression under different physiological and pathological conditions. Recently, differentially expressed circulating microRNAs were focused on as potential biomarkers for cancer screening. We herein review the role of circulating microRNAs for cancer diagnosis, tumor subtype classification, chemo- or radio-resistance monitoring, and outcome prognosis. Moreover, circulating microRNAs still have several issues hindering their reliability for the practical clinical application. Future studies need to elucidate further potential application of circulating microRNAs as specific and sensitive markers for clinical diagnosis or prognosis in cancers.
Collapse
Affiliation(s)
- Hao Wang
- 1Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Ran Peng
- 2Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Junjie Wang
- 2Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Zelian Qin
- 1Medical Research Center, Peking University Third Hospital, Beijing, China
| | - Lixiang Xue
- 1Medical Research Center, Peking University Third Hospital, Beijing, China.,2Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
7
|
Lenzo NP, Meyrick D, Turner JH. Review of Gallium-68 PSMA PET/CT Imaging in the Management of Prostate Cancer. Diagnostics (Basel) 2018; 8:E16. [PMID: 29439481 PMCID: PMC5871999 DOI: 10.3390/diagnostics8010016] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 01/13/2023] Open
Abstract
Over 90% of prostate cancers over-express prostate specific membrane antigen (PSMA) and these tumor cells may be accurately targeted for diagnosis by 68Ga-PSMA-positron emission tomography/computed tomography (68Ga-PSMA-PET/CT) imaging. This novel molecular imaging modality appears clinically to have superseded CT, and appears superior to MR imaging, for the detection of metastatic disease. 68Ga-PSMA PET/CT has the ability to reliably stage prostate cancer at presentation and can help inform an optimal treatment approach. Novel diagnostic applications of 68Ga-PSMA PET/CT include guiding biopsy to improve sampling accuracy, and guiding surgery and radiotherapy. In addition to facilitating the management of metastatic castrate resistant prostate cancer (mCRPC), 68Ga-PSMA can select patients who may benefit from targeted systemic radionuclide therapy. 68Ga-PSMA is the diagnostic positron-emitting theranostic pair with the beta emitter Lutetium-177 PSMA (177Lu-PSMA) and alpha-emitter Actinium-225 PSMA (225Ac-PSMA) which can both be used to treat PSMA-avid metastases of prostate cancer in the molecular tumor-targeted approach of theranostic nuclear oncology.
Collapse
Affiliation(s)
- Nat P Lenzo
- Nuclear Oncology, Theranostics Australia, 106/1 Silas Street, Richmond Quarter Building, East Fremantle, WA 6158, Australia.
- School of Medicine and Pharmacology, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009, Australia.
| | - Danielle Meyrick
- Nuclear Oncology, Theranostics Australia, 106/1 Silas Street, Richmond Quarter Building, East Fremantle, WA 6158, Australia.
| | - J Harvey Turner
- School of Medicine and Pharmacology, University of Western Australia, 35 Stirling Highway, Nedlands, WA 6009, Australia.
| |
Collapse
|