1
|
Lo HZ, Choy KT, Kong JCH. FDG-PET/MRI in colorectal cancer care: an updated systematic review. Abdom Radiol (NY) 2025; 50:49-63. [PMID: 39073608 PMCID: PMC11711575 DOI: 10.1007/s00261-024-04460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Since its introduction in 2011, FDG-PET/MRI has been advocated as a useful adjunct in colorectal cancer care. However, gaps and limitations in current research remain. This systematic review aims to review the current literature to quantify the utility of FDG-PET/MRI in colorectal cancer care. METHODS An up-to-date review was performed on the available literature between 2000 and 2023 on PubMed, EMBASE, Medline, databases. All studies reporting on the use of FDG-PET/MRI in colorectal cancer care were analyzed. The main outcome measures were accuracy in initial staging, restaging, and detection of metastatic disease in both rectal as well as colon cancers. The secondary outcome was comparing the performance of FDG-PET/MRI versus Standard of Care Imaging (SCI). Finally, the clinical significance of FDG-PET/MRI was measured in the change in management resulting from imaging findings. RESULTS A total of 22 observational studies were included, accounting for 988 patients. When individually compared to current Standard of Care Imaging (SCI)-MRI pelvis for rectal cancer and thoraco-abdominal contrast CT, PET/MRI proved superior in terms of distant metastatic disease detection. This led to as much as 21.0% change in management. However, the technological limitations of PET/MRI were once again highlighted, suggesting SCI should retain its place as first-line imaging. CONCLUSION FDG-PET/MRI appears to be a promising adjunct in staging and restaging of colorectal cancer in carefully selected patients.
Collapse
Affiliation(s)
- Hui Zhen Lo
- School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia.
| | - Kay Tai Choy
- Department of Surgery, Austin Health, Melbourne, VIC, Australia
| | - Joseph Cherng Huei Kong
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Colorectal Surgery, Alfred Hospital, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Becker MMC, Arruda GFA, Berenguer DRF, Buril RO, Cardinale D, Brandão SCS. Anthracycline cardiotoxicity: current methods of diagnosis and possible role of 18F-FDG PET/CT as a new biomarker. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2023; 9:17. [PMID: 36973762 PMCID: PMC10041777 DOI: 10.1186/s40959-023-00161-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/01/2023] [Indexed: 03/29/2023]
Abstract
Despite advances in chemotherapy, the drugs used in cancer treatment remain rather harmful to the cardiovascular system, causing structural and functional cardiotoxic changes. Positron-emission tomography associated with computed tomography (PET/CT) has emerged like a promising technique in the early diagnosis of these adverse drug effects as the myocardial tissue uptake of fluorodeoxyglucose labeled with fluorine-18 (18F-FDG), a glucose analog, is increased after their use. Among these drugs, anthracyclines are the most frequently associated with cardiotoxicity because they promote heart damage through DNA breaks, and induction of an oxidative, proinflammatory, and toxic environment. This review aimed to present the scientific evidence available so far regarding the use of 18F-FDG PET/CT as an early biomarker of anthracycline-related cardiotoxicity. Thus, it discusses the physiological basis for its uptake, hypotheses to justify its increase in the myocardium affected by anthracyclines, importance of 18F-FDG PET/CT findings for cardio-oncology, and primary challenges of incorporating this technique in standard clinical oncology practice.
Collapse
Affiliation(s)
- Mônica M C Becker
- Postgraduate Program in Surgery, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil
| | - Gustavo F A Arruda
- Recife Medical School, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil
| | - Diego R F Berenguer
- Postgraduate Program in Translational Health, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil
| | - Roberto O Buril
- Postgraduate Program in Surgery, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil
| | - Daniela Cardinale
- Cardioncology Unit, European Institute of Oncology, I.R.C.C.S., Milan, Italy
| | - Simone C S Brandão
- Postgraduate Program in Surgery, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil.
- Recife Medical School, Federal University of Pernambuco, Recife, State of Pernambuco, Brazil.
- Nuclear Medicine Department, Hospital das Clínicas, Federal University of Pernambuco, 1st floor, 1235 Avenida Professor Moraes Rego, Recife, State of Pernambuco, 50670-901, Brazil.
| |
Collapse
|
3
|
Venet M, Friedberg MK, Mertens L, Baranger J, Jalal Z, Tlili G, Villemain O. Nuclear Imaging in Pediatric Cardiology: Principles and Applications. Front Pediatr 2022; 10:909994. [PMID: 35874576 PMCID: PMC9301385 DOI: 10.3389/fped.2022.909994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Nuclear imaging plays a unique role within diagnostic imaging since it focuses on cellular and molecular processes. Using different radiotracers and detection techniques such as the single photon emission scintigraphy or the positron emission tomography, specific parameters can be assessed: myocardial perfusion and viability, pulmonary perfusion, ventricular function, flow and shunt quantification, and detection of inflammatory processes. In pediatric and congenital cardiology, nuclear imaging can add complementary information compared to other imaging modalities such as echocardiography or magnetic resonance imaging. In this state-of-the-art paper, we appraise the different techniques in pediatric nuclear imaging, evaluate their advantages and disadvantages, and discuss the current clinical applications.
Collapse
Affiliation(s)
- Maelys Venet
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Mark K. Friedberg
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Luc Mertens
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Jerome Baranger
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Zakaria Jalal
- Department of Congenital and Pediatric Cardiology, Hôpital du Haut-Lévêque, CHU de Bordeaux, Bordeaux-Pessac, France
| | - Ghoufrane Tlili
- Department of Nuclear Medicine, Hôpital du Haut-Lévêque, CHU de Bordeaux, Bordeaux-Pessac, France
| | - Olivier Villemain
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Abstract
The prospect and potentiality of interfacing minds with machines has long captured human imagination. Recent advances in biomedical engineering, computer science, and neuroscience are making brain–computer interfaces a reality, paving the way to restoring and potentially augmenting human physical and mental capabilities. Applications of brain–computer interfaces are being explored in applications as diverse as security, lie detection, alertness monitoring, gaming, education, art, and human cognition augmentation. The present tutorial aims to survey the principal features and challenges of brain–computer interfaces (such as reliable acquisition of brain signals, filtering and processing of the acquired brainwaves, ethical and legal issues related to brain–computer interface (BCI), data privacy, and performance assessment) with special emphasis to biomedical engineering and automation engineering applications. The content of this paper is aimed at students, researchers, and practitioners to glimpse the multifaceted world of brain–computer interfacing.
Collapse
|
5
|
Zhu Y, Zhu X. MRI-Driven PET Image Optimization for Neurological Applications. Front Neurosci 2019; 13:782. [PMID: 31417346 PMCID: PMC6684790 DOI: 10.3389/fnins.2019.00782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are established imaging modalities for the study of neurological disorders, such as epilepsy, dementia, psychiatric disorders and so on. Since these two available modalities vary in imaging principle and physical performance, each technique has its own advantages and disadvantages over the other. To acquire the mutual complementary information and reinforce each other, there is a need for the fusion of PET and MRI. This combined dual-modality (either sequential or simultaneous) could generate preferable soft tissue contrast of brain tissue, flexible acquisition parameters, and minimized exposure to radiation. The most unique superiority of PET/MRI is mainly manifested in MRI-based improvement for the inherent limitations of PET, such as motion artifacts, partial volume effect (PVE) and invasive procedure in quantitative analysis. Head motion during scanning significantly deteriorates the effective resolution of PET image, especially for the dynamic scan with lengthy time. Hybrid PET/MRI device can offer motion correction (MC) for PET data through MRI information acquired simultaneously. Regarding the PVE associated with limited spatial resolution, the process and reconstruction of PET data can be further optimized by using acquired MRI either sequentially or simultaneously. The quantitative analysis of dynamic PET data mainly relies upon an invasive arterial blood sampling procedure to acquire arterial input function (AIF). An image-derived input function (IDIF) method without the need of arterial cannulization, can serve as a potential alternative estimation of AIF. Compared with using PET data only, combining anatomical or functional information from MRI for improving the accuracy in IDIF approach has been demonstrated. Yet, due to the interference and inherent disparity between the two modalities, these methods for optimizing PET image based on MRI still have many technical challenges. This review discussed upon the most recent progress, current challenges and future directions of MRI-driven PET data optimization for neurological applications, with either sequential or simultaneous acquisition approach.
Collapse
Affiliation(s)
- Yuankai Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|