1
|
Zhu Z, Pan W, Ming X, Wu J, Zhang X, Miao J, Cui W. The effect of probiotics on severe oral mucositis in cancer patients undergoing chemotherapy and/or radiotherapy: A meta-analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101983. [PMID: 39187039 DOI: 10.1016/j.jormas.2024.101983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE Oral mucositis is a frequent adverse reaction in cancer treatment. Probiotics exhibit anti-inflammatory and immunomodulatory properties that could prevent the occurrence of severe oral mucositis (SOM) induced by chemotherapy or radiation therapy in patients. This meta-analysis aimed to investigate the influence of probiotics on the incidence of SOM in cancer patients undergoing chemotherapy and/or radiotherapy. METHODS We conducted a comprehensive search in PubMed, Embase, the Cochrane Library, and the China National Knowledge Infrastructure (CNKI) from their inception to September 2023. Dichotomous variables are analyzed with odds ratios (ORs) with 95% CIs, and statistical significance was set at a two-tailed P <0 .05. The primary outcome indicator was the effect of probiotics on SOM. Secondary outcome indicators included the effect of probiotics on oral mucositis and the ratio of diarrhoea. Statistical analysis was conducted using RevMan (5.4) and Stata 17.0 software. RESULTS The study included a total of 12 articles and involved 1055 patients. All patients had undergone either radiotherapy or chemotherapy. Our findings revealed that the experimental group, which received probiotics for treatment, exhibited a lower ratio of SOM compared to the control group that received traditional placebo treatment (OR=0.37, 95%CI [0.28, 0.50], P<0.01). Subgroup analysis revealed variations in the ratio of SOM based on therapeutic regimen, tumor type, and region. The overall ratio of oral mucositis was significantly lower in the experimental group compared to the control group (OR=0.19, 95%CI [0.09-0.39], P<0.01). The ratio of diarrhea in the two patient groups showed no significant difference (OR=0.85, 95%CI [0.24, 3.01], P>0.05). CONCLUSION The results of this meta-analysis suggest that probiotics could decrease the occurrence of SOM.
Collapse
Affiliation(s)
- ZhiYi Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Zhejiang 310000, China
| | - Wenting Pan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan 450052, China
| | - Xianqing Ming
- Department of Stomatology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Anhui 230011, China
| | - Jiale Wu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100000, China
| | - Xinyue Zhang
- Department of Oral Radiology, Peking University School and Hospital of Stomatology, Beijing 100000, China
| | - Junfeng Miao
- Department of Stomatology, Jinan City People's Hospital, Jinan 271100, China
| | - Wei Cui
- Department of Oral and Maxillofacial Surgery, School of Stomatology, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration., National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, The Fourth Military Medical University, 169 Changle West Road, Xi'an, Shanxi 710000, China.
| |
Collapse
|
2
|
Yang B, Li W, Shi J. Preventive effect of probiotics on oral mucositis induced by anticancer therapy: a systematic review and meta-analysis of randomized controlled trials. BMC Oral Health 2024; 24:1159. [PMID: 39343876 PMCID: PMC11441129 DOI: 10.1186/s12903-024-04955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Oral mucositis (OM) is a prevalent and painful complication in patients undergoing anticancer treatment, which significantly impacts patients' quality of life (QoL) and adherence to therapy. The use of oral probiotics as a preventive strategy for OM has shown promise, but the clinical evidence remains inconclusive. This meta-analysis of randomized controlled trials (RCTs) aims to evaluate the efficacy of probiotics in preventing OM caused by radiotherapy and/or chemotherapy. METHODS A comprehensive search of PubMed, EMBASE, Web of Science, Cochrane Library, and ClinicalTrials.gov was conducted up to January 31, 2024, to identify eligible RCTs. The primary outcomes were the incidences of severe OM and all-grade OM. Secondary outcomes included rates of anticancer treatment completion, clinical response, requirement for enteral nutrition, time course of OM, body weight loss, QoL, and adverse events (AEs). Risk ratios (RRs) with 95% confidence intervals (CIs) were calculated. RESULTS A total of 12 RCTs involving 1,376 patients were included in the quantitative analysis. Probiotics administration significantly reduced the risk of severe OM (RR = 0.61, 95%CI: 0.53-0.72, P < 0.001) and all-grade OM (RR = 0.90, 95%CI: 0.82-0.98, P = 0.016) compared to the control group. Multi-strain probiotics formulations were more effective than single-strain probiotics in preventing severe OM (P = 0.011). There were no significant differences between the probiotics and control groups regarding anticancer treatment completion (RR = 1.03, 95%CI: 0.98-1.08, P = 0.198), clinical response to therapy (RR = 1.05, 95%CI: 0.94-1.17, P = 0.406), or the need for enteral nutrition (RR = 1.28, 95%CI: 0.49-3.35, P = 0.680). AEs related to probiotics were rare, with no serious AEs attributable to probiotics use. CONCLUSIONS Oral probiotics are both safe and effective in preventing and reducing the severity of OM in patients undergoing anticancer therapy. Multi-strain probiotics demonstrate superior efficacy compared to single-strain probiotics. Further research is warranted to confirm these findings and optimize probiotic treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Bo Yang
- Department of Oral Medicine, Shanxi Provincial People's Hospital, No. 29, Shuangtaisi Street, Taiyuan, 030012, Shanxi Province, China
| | - Wenjun Li
- Department of Oral Medicine, Shanxi Provincial People's Hospital, No. 29, Shuangtaisi Street, Taiyuan, 030012, Shanxi Province, China
| | - Jing Shi
- Department of Oral Medicine, Shanxi Provincial People's Hospital, No. 29, Shuangtaisi Street, Taiyuan, 030012, Shanxi Province, China.
| |
Collapse
|
3
|
Vitória Minzoni de Souza Iacia M, Eduarda Ferraz Mendes M, Cristiny de Oliveira Vieira K, Cristine Marques Ruiz G, José Leopoldo Constantino C, da Silva Martin C, Eloizo Job A, Alborghetti Nai G, Kretli Winkelstroter Eller L. Evaluation of curcumin nanoemulsion effect to prevent intestinal damage. Int J Pharm 2024; 650:123683. [PMID: 38092264 DOI: 10.1016/j.ijpharm.2023.123683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Curcumin has gained great prominence for the prevention and treatment of inflammatory bowel disease. However, studies have reported the low bioavailability of orally administered curcumin. This work aimed to evaluate the characteristics, stability and effects of a curcumin-carrying nanoemulsion in preventing intestinal damage induced by indomethacin. Nanoemulsions containing curcumin were prepared by spontaneous emulsification method and it was characterized by dynamic light scattering (DLS), zeta potential and the morphology was evaluated by scanning electron microscopy (SEM). Its stability was tested under different conditions of pH, temperature at 0, 7, 14, 21 and 28 days. In animal experimentation, 36 male mice of the Mus musculus lineage (C57BL/6) were used. The intestinal inflammation was evaluated based on macroscopic, histopathological and metagenomic analysis. It was found a stable nanoemulsion with a size of 409.8 nm, polydispersion index (PDI) of 0.132 and zeta potential of -18.8 mV. However, these lost charge in pH2, showing instability in acidic media (p < 0.05). In animal experiments, the nanoemulsion did not significantly improve intestinal inflammation. However, the group treated with curcumin nanoemulsion showed a higher relative abundance of the genus Lactobacillus (p < 0.05). In conclusion, the curcumin nanoemulsion was relevant in the modulation of the intestinal microbiota.
Collapse
Affiliation(s)
| | | | | | - Gilia Cristine Marques Ruiz
- Department of Physics, Faculty of Science and Technology, Universidade Estadual Paulista, FCT/UNESP, Presidente Prudente, SP, Brazil
| | - Carlos José Leopoldo Constantino
- Department of Physics, Faculty of Science and Technology, Universidade Estadual Paulista, FCT/UNESP, Presidente Prudente, SP, Brazil
| | - Cibely da Silva Martin
- Department of Physics, Faculty of Science and Technology, Universidade Estadual Paulista, FCT/UNESP, Presidente Prudente, SP, Brazil
| | - Aldo Eloizo Job
- Department of Physics, Faculty of Science and Technology, Universidade Estadual Paulista, FCT/UNESP, Presidente Prudente, SP, Brazil
| | - Gisele Alborghetti Nai
- Master's in Health Sciences - Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, SP, Brazil; Program of Animal Science - Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, Brazil
| | - Lizziane Kretli Winkelstroter Eller
- Faculty of Health Sciences - Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, SP, Brazil; Master's in Health Sciences - Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, SP, Brazil; Program of Animal Science - Universidade do Oeste Paulista/UNOESTE, Presidente Prudente, Brazil.
| |
Collapse
|
4
|
de Oliveira Vieira KC, da Silva ABB, Felício SA, Lira FS, de Figueiredo C, Bezirtzoglou E, Pereira VC, Nakagaki WR, Nai GA, Winkelströter LK. Orange juice containing Pediococcus acidilactici CE51 modulates the intestinal microbiota and reduces induced inflammation in a murine model of colitis. Sci Rep 2023; 13:18513. [PMID: 37898635 PMCID: PMC10613252 DOI: 10.1038/s41598-023-45819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023] Open
Abstract
The management of inflammatory bowel diseases has been widely investigated, especially ulcerative colitis. Thus, studies with the application of new probiotic products are needed in the prevention/treatment of these clinical conditions. The objective of this work was to evaluate the effects of probiotic orange juice containing Pediococcus acidilactici CE51 in a murine model of colitis. 45 male Swiss lineage mice were used, divided into five groups (n = 9): control, colitis, colitis + probiotic (probiotic orange juice containing CE51), colitis + placebo (orange juice) and colitis + sulfasalazine (10 mg/kg/Weight). The induction of colitis was performed with dextran sodium sulfate (3%). The treatment time was 5 and 15 days after induction. Histopathological analysis, serum measurements of TNF-α and C-reactive protein and metagenomic analysis of feces were performed after euthanasia. Probiotic treatment reduced inflammation in the small intestine, large intestine and spleen. The probiotic did not alter the serum dosages of TNF-α and C-reactive protein. Their use maintained the quantitative ratio of the phylum Firmicutes/Bacteroidetes and increased Lactobacillus helveticus with 15 days of treatment (p < 0.05). The probiotic orange juice containing P. acidilactici CE51 positively modulated the gut microbiota composition and attenuated the inflammation induced in colitis.
Collapse
Affiliation(s)
- Karolinny Cristiny de Oliveira Vieira
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Ana Beatriz Batista da Silva
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Suelen Aparecida Felício
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Fábio Santos Lira
- Department of Physical Education, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, UNESP, Rua Roberto Simonsen, 305, Presidente Prudente, Sao Paulo, 19060-900, Brazil
| | - Caíque de Figueiredo
- Department of Physical Education, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, UNESP, Rua Roberto Simonsen, 305, Presidente Prudente, Sao Paulo, 19060-900, Brazil
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Valéria Cataneli Pereira
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Wilson Romero Nakagaki
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Gisele Alborghetti Nai
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil
| | - Lizziane Kretli Winkelströter
- Health Sciences Faculty, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Cidade Universitária, Presidente Prudente, Sao Paulo, 19050-920, Brazil.
- Master in Health Science, UNOESTE (University of Western Sao Paulo), 700, Jose Bongiovani St., Presidente Prudente, Sao Paulo, 19050-920, Brazil.
| |
Collapse
|
5
|
Moreira ALG, Silva GA, Silva PHF, Salvador SL, Vicente RM, Ferreira GC, Tanus-Santos JE, Mayer MPA, Ishikawa KH, de Souza SLS, Furlaneto FAC, Messora MR. Bifidobacterium animalis subspecies lactis HN019 can reduce the sequelae of experimental periodontitis in rats modulating intestinal parameters, expression of lipogenic genes, and levels of hepatic steatosis. J Periodontal Res 2023; 58:1006-1019. [PMID: 37482954 DOI: 10.1111/jre.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/15/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE To determine whether Bifidobacterium animalis subspecies lactis HN019 (B. lactis HN019) can reduce the sequelae of experimental periodontitis (EP) in rats modulating systemic parameters. BACKGROUND This study evaluated the effects of probiotic therapy (PROB) in the prevention of local and systemic damage resulting from EP. METHODS Forty-eight rats were allocated into four groups: C (control), PROB, EP, and EP-PROB. PROB (1 × 1010 CFU/mL) administration lasted 8 weeks and PE was induced on the 7th week by placing ligature on the animals' lower first molars. All animals were euthanized in the 9th week of the experiment. Biomolecular analyses, RT-PCR, and histomorphometric analyses were performed. The data obtained were analyzed statistically (ANOVA, Tukey, p < .05). RESULTS The EP group had higher dyslipidemia when compared to the C group, as well as higher levels of insulin resistance, proteinuria levels, percentages of systolic blood pressure, percentage of fatty hepatocytes in the liver, and expression of adipokines was up-regulated (LEPR, NAMPT, and FABP4). All these parameters (except insulin resistance, systolic blood pressure, LEPR and FABP4 gene expression) were reduced in the EP-PROB group when compared to the EP group. The EP group had lower villus height and crypt depth, as well as a greater reduction in Bacteroidetes and a greater increase in Firmicutes when compared to the EP-PROB group. Greater alveolar bone loss was observed in the EP group when compared to the EP-PROB group. CONCLUSION Bifidobacterium lactis HN019 can reduce the sequelae of EP in rats modulating intestinal parameters, attenuating expression of lipogenic genes and hepatic steatosis.
Collapse
Affiliation(s)
- André L G Moreira
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Giselle A Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Pedro H F Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Raphael M Vicente
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Graziele C Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Jose E Tanus-Santos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karin H Ishikawa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sérgio Luís Scombatti de Souza
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Flávia A C Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Michel R Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Yao D, He W, Hu Y, Yuan Y, Xu H, Wang J, Dai H. Prevalence and influencing factors of probiotic usage among colorectal cancer patients in China: A national database study. PLoS One 2023; 18:e0291864. [PMID: 37733795 PMCID: PMC10513277 DOI: 10.1371/journal.pone.0291864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Probiotics have become increasingly popular among cancer patients. However, there is limited data from a real-world setting. This study aims to conduct a retrospective analysis to understand the trend of probiotic prescriptions in Chinese colorectal cancer patients. The Mann-Kendall and Cochran-Armitage trend test was applied to estimate the trend significance. Gephi software identified the combination of probiotic strains. The binary logistic regression investigated influence factors, and Spearman's rank correlation coefficient calculated correlations between probiotics and antitumor drug usage. The probiotic prescription percentage increased from 3.3% in 2015 to 4.2% in 2021 (Z = 12.77, p < 0.001). Although 48.3% of probiotic prescriptions had no indication-related diagnosis, diarrhea (OR 10.91, 95% CI 10.57-11.26) and dyspepsia (3.97, 3.82-4.12) included prescriptions most likely to contain probiotics. Prescriptions from the tertiary hospital (1.43,1.36-1.50), clinics (1.30, 1.28-1.33), and senior patients (1.018 per year, 1.017-1.019) were more likely to contain probiotics. Most probiotic prescriptions (95.0%) contained one probiotic product but multiple strains (69.3%). Enterococcus faecalis (49.7%), Lactobacillus acidophilus (39.4%), and Clostridium butyricum (27.9%) were the most prescribed strains. The probiotics co-prescribed with antitumor agents increased rapidly from 6.6% to 13.8% in seven years (Z = 15.31, p < 0.001). Oral fluorouracil agents (2.35, 2.14-2.59), regorafenib (1.70,1.27-2.26), and irinotecan (1.27,1.15-1.41) had a higher probability to co-prescribed with probiotics. There was no correlation between probiotic strain selection and specific antitumor drug use. The increasing prescription of probiotics in colorectal cancer patients in China may be related to treating the gastrointestinal toxicity of anti-cancer drugs. With unapproved indications and a lack of strain selectivity, evidence-based guidelines are urgently needed to improve probiotic use in this population.
Collapse
Affiliation(s)
- Difei Yao
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei He
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yangmin Hu
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, Cancer Institute, Ministry of Education, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huimin Xu
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| | - Juan Wang
- Department of Medical Oncology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haibin Dai
- Department of Pharmacy, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Research Center for Clinical Pharmacy, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Fernández Forné Á, García Anaya MJ, Segado Guillot SJ, Plaza Andrade I, de la Peña Fernández L, Lorca Ocón MJ, Lupiáñez Pérez Y, Queipo-Ortuño MI, Gómez-Millán J. Influence of the microbiome on radiotherapy-induced oral mucositis and its management: A comprehensive review. Oral Oncol 2023; 144:106488. [PMID: 37399707 DOI: 10.1016/j.oraloncology.2023.106488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
Radiation-induced mucositis is the most common, debilitating and painful acute toxicity associated with active treatment in head and neck cancer area, severely affecting more than 65% of patients. Oral microbiota significantly changes during cancer therapy and appears to be involved on its pathophysiology. This review aims to present a comprehensive update of new etiopathogenic factors and treatments that may decrease the incidence of mucositis, mainly modifications of dietary interventions to modify microbiome. Despite advances in recent years, its management is mainly symptomatic opioid-based with variable results on different substances analyzed for its prevention. Immunonutrition seems to play a significant role, particularly the supplementation of compounds such as fatty acids, polyphenols or selected probiotics have shown to promote commensal bacteria diversity and reduced incidence of ulcerative mucositis. Modification of the microbiome is a promising preventive treatment for mucositis although its evidence is still scarce. Large studies are needed to demonstrate the efficacy of interventions on microbiome and its clinical impact on radiation-induced mucositis.
Collapse
Affiliation(s)
- África Fernández Forné
- Department of Radiation Oncology. Punta Europa University Hospital. Algeciras, Cádiz, Spain
| | - María Jesús García Anaya
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | | | - Isaac Plaza Andrade
- Intercenter Clinical Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals, Biomedical Research Institute of Malaga (IBIMA)-CIMES-UMA, University of Malaga, 29010 Málaga, Spain
| | | | - María Jesús Lorca Ocón
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - Yolanda Lupiáñez Pérez
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| | - María Isabel Queipo-Ortuño
- Intercenter Clinical Unit of Medical Oncology, Regional and Virgen de la Victoria University Hospitals, Biomedical Research Institute of Malaga (IBIMA)-CIMES-UMA, University of Malaga, 29010 Málaga, Spain; Department of Surgical Specialties, Biochemical and Immunology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain.
| | - Jaime Gómez-Millán
- Department of Radiation Oncology, Virgen de la Victoria University Hospital, 29010 Málaga, Spain
| |
Collapse
|
8
|
Nowak R, Trzeciak-Ryczek A, Ciechanowicz A, Brodkiewicz A, Urasińska E, Kostrzewa-Nowak D. The Impact of Different Types of Physical Effort on the Expression of Selected Chemokine and Interleukin Receptor Genes in Peripheral Blood Cells. Cells 2023; 12:cells12081119. [PMID: 37190028 DOI: 10.3390/cells12081119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
This study aimed to assess the post-effort transcriptional changes of selected genes encoding receptors for chemokines and interleukins in young, physically active men to better understand the immunomodulatory effect of physical activity. The participants, aged 16-21 years, performed physical exercise tasks of either a maximal multistage 20 m shuttle-run test (beep test) or a repeated speed ability test. The expression of selected genes encoding receptors for chemokines and interleukins in nucleated peripheral blood cells was determined using RT-qPCR. Aerobic endurance activity was a positive stimulant that induced increased expression of CCR1 and CCR2 genes following lactate recovery, while the maximum expression of CCR5 was found immediately post-effort. The increase in the expression of inflammation-related genes encoding chemokine receptors triggered by aerobic effort strengthens the theory that physical effort induces sterile inflammation. Different profiles of studied chemokine receptor gene expression induced by short-term anaerobic effort suggest that not all types of physical effort activate the same immunological pathways. A significant increase in IL17RA gene expression after the beep test confirmed the hypothesis that cells expressing this receptor, including Th17 lymphocyte subsets, can be involved in the creation of an immune response after endurance efforts.
Collapse
Affiliation(s)
- Robert Nowak
- Institute of Physical Culture Sciences, University of Szczecin, 17C Narutowicza St., 70-240 Szczecin, Poland
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
| | - Alicja Trzeciak-Ryczek
- Institute of Biology, University of Szczecin, 13 Wąska St., 71-415 Szczecin, Poland
- The Centre for Molecular Biology and Biotechnology, University of Szczecin, 13 Wąska St., 71-415 Szczecin, Poland
| | - Andrzej Ciechanowicz
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland
| | - Andrzej Brodkiewicz
- Department of Pediatrics, Child Nephrology, Dialysotherapy and Management of Acute Poisoning, Pomeranian Medical University, 4 Maczna St., 70-204 Szczecin, Poland
| | - Elżbieta Urasińska
- Department of Pathology, Pomeranian Medical University in Szczecin, 1 Unii Lubelskiej St., 71-242 Szczecin, Poland
| | - Dorota Kostrzewa-Nowak
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University in Szczecin, 72 Powstańców Wlkp. Al., 70-111 Szczecin, Poland
| |
Collapse
|
9
|
Hong G, Li Y, Yang M, Li G, Jin Y, Xiong H, Qian W, Hou X. Baseline gut microbial profiles are associated with the efficacy of Bacillus subtilis and Enterococcus faecium in IBS-D. Scand J Gastroenterol 2023; 58:339-348. [PMID: 36281578 DOI: 10.1080/00365521.2022.2136013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Little is known about association between the efficacy of probiotics and baseline gut microbiota in irritable bowel syndrome (IBS). We aimed to explore gut microbiota in diarrhea-predominant IBS (IBS-D) and whether baseline gut microbiota was related to the efficacy of Bacillus subtilis and Enterococcus faecium (BE). METHODS This study recruited 19 healthy controls (HC) and 50 IBS-D patients, among whom 19 patients were administrated 500 mg BE orally three times daily for 2 weeks. Clinical data and fecal samples were collected from patients before and after treatment. 16S rRNA sequencing was performed to obtain fecal bacterial data. RESULTS There was no significant difference of alpha diversity, beta diversity, profiles of microbial phyla and genera between HC and IBS. BE improved IBS-SSS (IBS severity scoring system) and stool consistency, and altered Enterococcus, Blautia, Lachnoclostridium and Fusobacterium without significant impact on microbial structure in IBS-D. Notably, baseline fecal bacterial composition differed between non-responders and responders to BE concerning abdominal pain and bloating, with Atopobium, Pyramidobacter, Ruminococcus gnavus and Peptostreptococcus enriched in responders in terms of abdominal pain. There was reduced abundance of Prevotella, Ruminococcaceae UCG, Eubacterium eligens, Faecalibacterium and Eubacterium coprostanoligenes in responders compared with non-responders. Furthermore, BE increased beneficial bacteria including Faecalibacterium, Blautia and Butyricicoccus, decreased Lachnoclostridium and Bilophila, and influenced some microbial metabolic pathways in responders, such as mineral absorption, metabolism of arachidonic acid, d-arginine, D-ornithine, phenylalanine and vitamin B6. CONCLUSION Baseline fecal microbiome is associated with the efficacy of BE in attenuating abdominal pain and bloating in IBS-D.
Collapse
Affiliation(s)
- Gaichao Hong
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Li
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Yang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gangping Li
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Jin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanhua Xiong
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Qian
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Fallah M, Amin N, Moghadasian MH, Jafarnejad S. Probiotics for the Management of Oral Mucositis: An Interpretive Review of Current Evidence. Adv Pharm Bull 2023; 13:269-274. [PMID: 37342370 PMCID: PMC10278207 DOI: 10.34172/apb.2023.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 04/04/2024] Open
Abstract
Mucositis is one of the major side effects of anti-cancer therapies. Mucositis may lead to other abnormalities such as depression, infection, and pain, especially in young patients. Although there is no specific treatment for mucositis, several pharmacological and non-pharmacological options are available to prevent its complications. Probiotics have been recently considered as a preferable protocol to lessen the complications of chemotherapy, including mucositis. Probiotics could affect mucositis by anti-inflammatory and anti-bacterial mechanisms as well as augmenting the overall immune system function. These effects may be mediated through anti microbiota activities, regulating cytokine productions, phagocytosis, stimulating IgA releasement, protection of the epithelial shield, and regulation of immune responses. We have reviewed available literature pertaining to the effects of probiotics on oral mucositis in animal and human studies. While animal studies have reported protective effects of probiotics on oral mucositis, the evidence from human studies is not convincing.
Collapse
Affiliation(s)
- Maryam Fallah
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Negin Amin
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mohammed H. Moghadasian
- Department of Food and Human Nutritional Sciences and the Canadian Centre for Agri-Food Research in Health and Medicine, University of Manitoba, Winnipeg, Canada
| | - Sadegh Jafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
11
|
Jing N, Liu F, Wang R, Zhang Y, Yang J, Hou Y, Zhang H, Xie Y, Liu H, Ge S, Jin J. Both live and heat-killed Bifidobacterium animalis J-12 alleviated oral ulcers in LVG golden Syrian hamsters by gavage by directly intervening in the intestinal flora structure. Food Funct 2023; 14:2045-2058. [PMID: 36723265 DOI: 10.1039/d2fo03751c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Live and heat-killed Bifidobacterium has been proven to have anti-inflammatory and antioxidant effects. In this study, we evaluated the effects of live and heat-killed Bifidobacterium animalis J-12 (J-12) on the oral ulceration of LVG golden Syrian hamsters after buccal membrane injection with methyl viologen dichloride. Results showed that interleukin-1β, glutathione, and malondialdehyde in serum were downregulated by the gavage of live and heat-killed J-12 bacteria. The J-12 live and heat-killed bacteria can reduce the expression of matrix metalloproteinase-9 by reducing the expression of nuclear factor kappa-B, thus reducing the expression of anti-inflammatory factors lipoxin A4 and prostaglandin E2. Reducing the expression of caspase-3 and adenosine diphosphate ribose polymerase resulted in a reduction of ulcer tissue DNA damage. In addition, regulating the structure of the intestinal flora prevented the process of oral ulcer formation. This study shows that J-12 can reduce the risk of oral ulcer formation while also having a positive effect on inhibiting existing oral ulcer growth.
Collapse
Affiliation(s)
- Nanqing Jing
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot, Inner Mongolia 010110, China.,Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot, Inner Mongolia 010110, China
| | - Ran Wang
- Department of Nutrition and Health, Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China
| | - Yan Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Jianjun Yang
- Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Yubing Hou
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Hongxing Zhang
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Yuanhong Xie
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Hui Liu
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| | - Shaoyang Ge
- BEIJING HEYIYUAN BIOTECHNOLOGY Co, Ltd., Beijing 100088, China
| | - Junhua Jin
- Key Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing 102206, China.
| |
Collapse
|
12
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
13
|
Li X, Abdel-Moneim AME, Mesalam NM, Yang B. Effects of Lysophosphatidylcholine on Jejuna Morphology and Its Potential Mechanism. Front Vet Sci 2022; 9:911496. [PMID: 35795789 PMCID: PMC9252431 DOI: 10.3389/fvets.2022.911496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023] Open
Abstract
Lysophosphatidylcholine (LPC) plays a vital role in promoting jejuna morphology in broilers. However, the potential mechanism behind LPC improving the chicken jejuna morphology is unclear. Therefore, the present study was designed to reveal the important genes associated with LPC regulation in birds' jejuna. Thus, GSE94622, the gene expression microarray, was obtained from Gene Expression Omnibus (GEO). GSE94622 consists of 15 broiler jejuna samples from two LPC-treated (LPC500 and LPC1000) and the control groups. Totally 98 to 217 DEGs were identified by comparing LPC500 vs. control, LPC1000 vs. control, and LPC1000 vs. LPC500. Gene ontology (GO) analysis suggested that those DEGs were mainly involved in the one-carbon metabolic process, carbon dioxide transport, endodermal cell differentiation, the positive regulation of dipeptide transmembrane transport, cellular pH reduction, and synaptic transmission. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated the DEGs were enriched in NOD-like receptor (NLR), RIG-I-like receptor (RILR), Toll-like receptor (TLR), and necroptosis signaling pathway. Moreover, many genes, such as RSAD2, OASL, EPSTI1, CMPK2, IFIH1, IFIT5, USP18, MX1, and STAT1 might be involved in promoting the jejuna morphology of broilers. In conclusion, this study enhances our understanding of LPC regulation in jejuna morphology.
Collapse
Affiliation(s)
- Xiaofeng Li
- College of Animal Science, Anhui Science and Technology University, Huainan, China
| | | | - Noura M. Mesalam
- Department of Biological Applications, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, Egypt
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Huainan, China
- *Correspondence: Bing Yang
| |
Collapse
|
14
|
Al-Qadami G, Van Sebille Y, Bowen J, Wardill H. Oral-Gut Microbiome Axis in the Pathogenesis of Cancer Treatment-Induced Oral Mucositis. FRONTIERS IN ORAL HEALTH 2022; 3:881949. [PMID: 35419563 PMCID: PMC8996059 DOI: 10.3389/froh.2022.881949] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Oral mucositis (OM) is one of the most common and debilitating oral complications of cancer treatments including chemotherapy, radiotherapy, and hematopoietic stem cell transplantation. It is associated with severe pain and difficulties in chewing, swallowing, and speech. This leads to impairment of basic oral functions and could result in unplanned treatment interruption or modification. As such, OM negatively impacts both patients' quality of life as well as tumor prognostic outcomes. Understanding pathways underlying OM pathogenesis help identify new targets for intervention or prevention. The pathophysiology of OM has been widely studied over past decades with several pathways related to oxidative stress, inflammation, and molecular and cellular signaling being implicated. In this mini-review, we will discuss the emerging role of the oral-gut microbiome axis in the development of OM. Particularly, we will elaborate on how the alterations in the oral and gut microbiota as well as intestinal dysfunction caused by cancer treatments could contribute to the pathogenesis of OM. Further, we will briefly discuss the potential methods for targeting the oral-gut microbiome axis to improve OM outcomes.
Collapse
Affiliation(s)
- Ghanyah Al-Qadami
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | | | - Joanne Bowen
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Hannah Wardill
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
- Precision Medicine Theme (Cancer), South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
15
|
Coutinho JOPA, Quintanilha MF, Campos MRA, Ferreira E, de Menezes GCA, Rosa LH, Rosa CA, Vital KD, Fernandes SOA, Cardoso VN, Nicoli JR, Tiago FCP, Martins FS. Antarctic Strain of Rhodotorula mucilaginosa UFMGCB 18,377 Attenuates Mucositis Induced by 5-Fluorouracil in Mice. Probiotics Antimicrob Proteins 2021; 14:486-500. [PMID: 34255281 DOI: 10.1007/s12602-021-09817-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
Mucositis is one of the most strenuous side effects caused by chemotherapy drugs, such as 5-fluorouracil (5-FU), during the treatment of several types of cancers. The disease is so prevalent and aggressive that many patients cannot resist such symptoms. However, despite its frequency and clinical significance, there is no effective treatment to prevent or treat mucositis. Thus, the use of probiotics as an adjuvant for the treatment has gained prominence. In the present study, we evaluated the effectiveness of oral administration of the Antarctic strain of Rhodotorula mucilaginosa UFMGCB 18,377 as an alternative to minimize side effects of 5-FU-induced mucositis in mice. Body weight, food consumption, stool consistency, and presence of blood in the feces were assessed daily in mice orally treated or not with the yeast and submitted or not to experimental mucositis. Blood, bones, and intestinal tissues and fluid were used to determine intestinal permeability and immunological, microbiological, and histopathological parameters. Treatment with R. mucilaginosa UFMGCB 18,377 was able to decrease clinical signs of the disease, such as reduction of food intake and body weight loss, and also decreased the number of intestinal enterobacteria and intestinal length shortening. Additionally, treatment was able to decrease the levels of MPO and EPO activities and inflammatory infiltrates, as well as the histopathological lesions characteristic of mucositis in the jejunum and ileum. Results of the present study showed that the oral administration of R. mucilaginosa UFMGCB 18,377 protected mice against mucositis induced by 5-FU.
Collapse
Affiliation(s)
- Joana O P A Coutinho
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mônica F Quintanilha
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marina R A Campos
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Enio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Graciéle C A de Menezes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz H Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carlos A Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Katia D Vital
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone O A Fernandes
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert N Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiana C P Tiago
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Belo Horizonte, MG, Brazil
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. .,Laboratório de Agentes Bioterapêuticos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, 30270-901, Brazil.
| |
Collapse
|
16
|
Xia C, Jiang C, Li W, Wei J, Hong H, Li J, Feng L, Wei H, Xin H, Chen T. A Phase II Randomized Clinical Trial and Mechanistic Studies Using Improved Probiotics to Prevent Oral Mucositis Induced by Concurrent Radiotherapy and Chemotherapy in Nasopharyngeal Carcinoma. Front Immunol 2021; 12:618150. [PMID: 33841399 PMCID: PMC8024544 DOI: 10.3389/fimmu.2021.618150] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Earlier evidence has proven that probiotic supplements can reduce concurrent chemoradiotherapy (CCRT)-induced oral mucositis (OM) in nasopharyngeal cancer (NPC). The incidence of severe OM (grade 3 or higher) was the primary endpoint in this study. We first enrolled 85 patients with locally advanced NPC who were undergoing CCRT. Of them, 77 patients were finally selected and randomized (1:1) to receive either a probiotic cocktail or placebo. To investigate the protective effects and the mechanism of probiotic cocktail treatment on OM induced by radiotherapy and chemotherapy, we randomly divided the rats into the control (C) group, the model (M) group, and the probiotic (P) group. After treatment, samples from the tongue, blood, and fecal and proximal colon tissues on various days (7th, 14th, and 21st days) were collected and tested for the inflammatory response, cell apoptosis, intestinal permeability, and intestinal microbial changes. We found that patients taking the probiotic cocktail showed significantly lower OM. The values of the incidence of 0, 1, 2, 3, and 4 grades of OM in the placebo group and in the probiotic cocktail group were reported to be 0, 14.7, 38.2, 32.4, and 14.7% and 13.9, 36.1, 25, 22.2, and 2.8%, respectively. Furthermore, patients in the probiotic cocktail group showed a decrease in the reduction rate of CD3+ T cells (75.5% vs. 81%, p < 0.01), CD4+ T cells (64.53% vs. 79.53%, p < 0.01), and CD8+ T cells (75.59 vs. 62.36%, p < 0.01) compared to the placebo group. In the rat model, the probiotic cocktail could ameliorate the severity of OM, decrease the inflammatory response, cause cell apoptosis and intestinal permeability, and restore the structure of gut microbiota to normalcy. In conclusion, the modified probiotic cocktail significantly reduces the severity of OM by enhancing the immune response of patients with NPC and modifying the structure of gut microbiota. Clinical Trial Registration: The Clinical Trial Registration should be the NCT03112837.
Collapse
Affiliation(s)
- Chaofei Xia
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Chunling Jiang
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Wenyu Li
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jing Wei
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hu Hong
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Jingao Li
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Liu Feng
- Department of Radiation Oncology, Jiangxi Cancer Hospital, Nanchang, China.,NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), Nanchang, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongbo Xin
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
17
|
Effects of mild moxibustion on intestinal microbiome and NLRP3 inflammasome in rats with 5-fluorouracil-induced intestinal mucositis. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2020; 19:144-157. [PMID: 33353843 DOI: 10.1016/j.joim.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/20/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The present study investigated how mild moxibustion treatment affects the intestinal microbiome and expression of NLRP3-related immune factors in a rat model of intestinal mucositis (IM) induced with 5-fluorouracil (5-Fu). METHODS Forty male Sprague-Dawley rats were randomly divided into control, chemotherapy, moxibustion and probiotics groups. The IM rat model was established by intraperitoneal injection of 5-Fu. Mild moxibustion treatment and intragastric probiotic administration were provided once daily for 15 days. Tissue morphology, serum levels of inflammatory factors and the expression levels of tight junction proteins, caspase-1, gasdermin D and NLRP3 were evaluated in colon tissue, through hematoxylin and eosin staining, electron microscopy, enzyme-linked immunosorbent assay, Western blotting, quantitative real-time reverse transcription polymerase chain reaction and immunofluorescence. Gut microbiome profiling was conducted through 16S rRNA amplicon sequencing. RESULTS Moxibustion and probiotic treatments significantly increased the expression levels of tight junction proteins, reduced cell apoptosis and the expression levels of caspase-1, gasdermin D and NLRP3; they also decreased the serum levels of tumor necrosis factor-α, interleukin (IL)-6, IL-1β and IL-18, while increasing serum levels of IL-10. Moxibustion and probiotic treatments also corrected the reduction in α-diversity and β-diversity in IM rats, greatly increased the proportion of the dominant bacterial genus Lactobacillus and reduced the abundance of the genera Roseburia and Escherichia in chemotherapy-treated rats to levels observed in healthy animals. We also found that these dominant genera were firmly correlated with the regulation of pyroptosis-associated proteins and inflammatory factors. Finally, moxibustion and probiotic treatments elicited similar effects in regulating intestinal host-microbial homeostasis and the expression of NLRP3 inflammasome-related factors. CONCLUSION Moxibustion exerts its therapeutic effect on IM by ameliorating mucosal damage and reducing inflammation. Moreover, moxibustion modulates the gut microbiota, likely via decreasing the expression levels of the NLRP3 inflammasome.
Collapse
|
18
|
Protective Effect of Cashew Gum (Anacardium occidentale L.) on 5-Fluorouracil-Induced Intestinal Mucositis. Pharmaceuticals (Basel) 2019; 12:ph12020051. [PMID: 30987265 PMCID: PMC6630449 DOI: 10.3390/ph12020051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022] Open
Abstract
Intestinal mucositis is a common complication associated with 5-fluorouracil (5-FU), a chemotherapeutic agent used for cancer treatment. Cashew gum (CG) has been reported as a potent anti-inflammatory agent. In the present study, we aimed to evaluate the effect of CG extracted from the exudate of Anacardium occidentale L. on experimental intestinal mucositis induced by 5-FU. Swiss mice were randomly divided into seven groups: Saline, 5-FU, CG 30, CG 60, CG 90, Celecoxib (CLX), and CLX + CG 90 groups. The weight of mice was measured daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis), levels of malondialdehyde (MDA), myeloperoxidase (MPO), and glutathione (GSH), and immunohistochemical analysis of interleukin 1 beta (IL-1β) and cyclooxygenase-2 (COX-2). 5-FU induced intense weight loss and reduction in villus height compared to the saline group. CG 90 prevented 5-FU-induced histopathological changes and decreased oxidative stress through decrease of MDA levels and increase of GSH concentration. CG attenuated inflammatory process by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. Our findings suggest that CG at a concentration of 90 mg/kg reverses the effects of 5-FU-induced intestinal mucositis.
Collapse
|
19
|
Carvalho R, Vaz A, Pereira FL, Dorella F, Aguiar E, Chatel JM, Bermudez L, Langella P, Fernandes G, Figueiredo H, Goes-Neto A, Azevedo V. Gut microbiome modulation during treatment of mucositis with the dairy bacterium Lactococcus lactis and recombinant strain secreting human antimicrobial PAP. Sci Rep 2018; 8:15072. [PMID: 30305667 PMCID: PMC6180057 DOI: 10.1038/s41598-018-33469-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022] Open
Abstract
Mucositis is an inflammatory condition of the gut, caused by an adverse effect of chemotherapy drugs, such as 5-fluorouracil (5-FU). In an attempt to develop alternative treatments for the disease, several research groups have proposed the use of probiotics, in particular, Lactic Acid Bacteria (LAB). In this context, the use of recombinant LAB, for delivering anti-inflammatory compounds has also been explored. In previous work, we demonstrated that either Lactococcus lactis NZ9000 or a recombinant strain expressing an antimicrobial peptide involved in human gut homeostasis, the Pancreatitis-associated Protein (PAP), could ameliorate 5-FU-induced mucositis in mice. However, the impact of these strains on the gut microbiota still needs to be elucidated. Therefore, in the present study, we aimed to characterize the effects of both Lactococci strains in the gut microbiome of mice through a 16 S rRNA gene sequencing metagenomic approach. Our data show 5-FU caused a significant decrease in protective bacteria and increase of several bacteria associated with pro-inflammatory traits. The Lactococci strains were shown to reduce several potential opportunistic microbes, while PAP delivery was able to suppress the growth of Enterobacteriaceae during inflammation. We conclude the strain secreting antimicrobial PAP was more effective in the control of 5-FU-dysbiosis.
Collapse
Affiliation(s)
- Rodrigo Carvalho
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil.
| | - Aline Vaz
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | | | - Fernanda Dorella
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| | - Eric Aguiar
- Federal University of Bahia (UFBA), Salvador, BA, Brazil
| | - Jean-Marc Chatel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Luis Bermudez
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Gabriel Fernandes
- Fiocruz - Centro de Pesquisa Renê Rachou, Belo Horizonte, MG, Brazil
| | | | | | - Vasco Azevedo
- Federal University of Minas Gerais (UFMG-ICB), Belo Horizonte, MG, Brazil
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To provide an updated perspective on the use of probiotics as adjuvant treatment strategy for patients suffering from or at risk of developing mucositis. RECENT FINDINGS Studies suggest that oral and intestinal microbiota could be relevant to mucositis development and treatment, but no clear high-risk pattern has been identified and no single probiotic formulation has emerged from human clinical trials for strong recommendation. Promising results from available clinical trials suggest their use in patients with peri-implant mucositis or at risk of anticancer treatment-related oral or intestinal mucositis. In general, a positive effects of Lactobacillus species is becoming consistent, particularly Lactobacillus reuteri, in the treatment of peri-implant mucositis and Lactobacillus brevi CD2 in the prevention of chemoradiotherapy-related oral mucositis. However, several limitations still need to be addressed by future research. Nonetheless, their use appears to be safe. Therefore, decision to consider the use of probiotics ultimately depends on the preference of the clinicians. SUMMARY In the ongoing era of 'precision medicine', efforts should be directed toward the identification of high-risk patient populations which could benefit most from targeted interventions with probiotics enabling an improvement of clinical outcomes and quality of life in a cost-effective manner.
Collapse
Affiliation(s)
- Emanuele Cereda
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | |
Collapse
|