1
|
Nunes APL, Andrade HHND, Alves DDN, Araújo GR, Salvadori MGDSS, Almeida RND, Castro RDD. Orofacial antinociceptive activity of codeine-associated geraniol in mice: a controlled triple-blind study. Braz Oral Res 2024; 38:e071. [PMID: 39109768 PMCID: PMC11376599 DOI: 10.1590/1807-3107bor-2024.vol38.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/06/2024] [Indexed: 09/20/2024] Open
Abstract
This is a nonclinical, controlled, and triple-blind study to investigate the effects of codeine-associated geraniol on the modulation of orofacial nociception and its potential central nervous system depressing effect in an animal model. The orofacial antinociceptive activity of geraniol in combination with codeine was assessed through the following tests: (i) formalin-induced pain, (ii) glutamate-induced pain, and (iii) capsaicin-induced pain. Six animals were equally distributed into six groups and received the following treatments, given intraperitoneally (i.p.) 30 minutes before the experiments: a) geraniol/codeine 50/30 mg/kg; b) geraniol/codeine 50/15 mg/kg; c) geraniol/codeine 50/7.5 mg/kg; d) geraniol 50 mg/kg; e) codeine 30 mg/kg (positive control); or f) 0.9% sodium chloride (negative control). We performed pain behavior analysis after the injection of formalin (20 µL, 20%), glutamate (20 µL, 25 µM), and capsaicin (20 µL, 2.5 µg) into the paranasal region. Rubbing time of the paranasal region by the hind or front paw was used as a parameter. In the neurogenic phase of the formalin test, the geraniol/codeine at 50/7.5 mg/kg was able to promote the maximum antinociceptive effect, reducing nociception by 71.9% (p < 0.0001). In the inflammatory phase of the formalin test, geraniol/codeine at 50/30 mg/kg significantly reduced orofacial nociception (p < 0.005). In the glutamate test, geraniol/codeine at 50/30 mg/kg reduced the rubbing time by 54.2% and reduced nociception in the capsaicin test by 66.7% (p < 0.005). Geraniol alone or in combination does not promote nonspecific depressing effects on the central nervous system. Based on our findings, we suggest the possible synergy between geraniol and codeine in the modulation of orofacial pain.
Collapse
Affiliation(s)
- Ana Paula Lopes Nunes
- Universidade Federal da Paraíba - UFPB, Faculty of Pharmacy, Department of Pharmaceutical Sciences, João Pessoa, PB, Brazil
| | - Humberto Hugo Nunes de Andrade
- Universidade Federal da Paraíba - UFPB, Faculty of Nursing, Department Development and Technological Innovation in Medicines, João Pessoa, PB, Brazil
| | - Danielle da Nóbrega Alves
- Universidade Federal da Paraíba - UFPB, Faculty of Dentistry, Department of Clinical and Social Dentistry, João Pessoa, PB, Brazil
| | - Gleycyelly Rodrigues Araújo
- Universidade Federal da Paraíba - UFPB, Faculty of Dentistry, Department of Clinical and Social Dentistry, João Pessoa, PB, Brazil
| | | | - Reinaldo Nóbrega de Almeida
- Universidade Federal da Paraíba - UFPB, Institute of Drugs and Medicines Research, Department of Physiology and Pathology, João Pessoa, PB, Brazil
| | - Ricardo Dias de Castro
- Universidade Federal da Paraíba - UFPB, Faculty of Dentistry, Department of Clinical and Social Dentistry, João Pessoa, PB, Brazil
| |
Collapse
|
2
|
da Costa RHS, Martins AOBPB, Pessoa RT, Alshehri SA, Wahab S, Ahmad MF, Suliman M, da Silva LYS, Alcântara IS, Ramos AGB, de Oliveira MRC, Batista FLA, Delmondes GDA, de Farias PAM, Rocha JE, Coutinho HDM, Raposo A, Carrascosa C, Jaber JR, de Menezes IRA. Mechanisms of Actions Involved in The Antinociceptive Effect of Estragole and its β-Cyclodextrin Inclusion Complex in Animal Models. PLANTS (BASEL, SWITZERLAND) 2022; 11:2854. [PMID: 36365307 PMCID: PMC9654024 DOI: 10.3390/plants11212854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: estragole is a monoterpene found in the essential oils of several aromatic plants, which can be used for several pharmacological activities. The aim of this study was to evaluate the antinociceptive effect of estragole (Es) and its β-cyclodextrins inclusion complex (Es/β-CD). (2) Methods: the effects of Es and Es/β-CD on the central nervous system (CNS) were evaluated through open field and rota-rod assays, and the antinociceptive effect in formalin models, abdominal writhing induced by acetic acid, hot plate, tail flick test and plantar mechanical hyperalgesia. (3) Results: Es and Es/β-CD showed no alterations on the CNS evaluated parameters and the results suggested there was an antinociceptive action in the formalin, abdominal writhing, hot plate, tail flick tests and plantar mechanical hyperalgesia, proposing the involvement of the nitric oxide, glutamatergic signaling pathways, cyclic guanosine monophosphate and vanilloid pathways. (4) Conclusion: the results suggest that Es and Es/β-CD have a promising antinociceptive potential as a possible alternative for the pharmacological treatment of pain, also showing that the encapsulation of Es in β-cyclodextrins probably improves its pharmacological properties, since the complexation process involves much lower amounts of the compound, contributing to better bioavailability and a lower probability of adverse effect development.
Collapse
Affiliation(s)
- Roger Henrique Sousa da Costa
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | | | - Renata Torres Pessoa
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | - Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Lucas Yure Santos da Silva
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | - Isabel Sousa Alcântara
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | - Andreza Guedes Barbosa Ramos
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | - Maria Rayane Correia de Oliveira
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
- Graduate Program in Biotechnology-Northeast Biotechnology Network (RENORBIO), State University of Ceará (UECE), Fortaleza 60741-000, Ceará, Brazil
| | - Francisco Lucas Alves Batista
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | | | | | - Janaína Esmeraldo Rocha
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Conrado Carrascosa
- Department of Animal Pathology and Production, Bromatology and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Trasmontaña s/n, 35413 Arucas, Spain
| | - José Raduan Jaber
- Departamento de Morfologia, Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, 35413 Las Palmas de Gran Canaria, Spain
| | - Irwin Rose Alencar de Menezes
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri-URCA, Pimenta 63.100-000, Ceará, Brazil
| |
Collapse
|
3
|
Rodriguez CEB, Ouyang L, Kandasamy R. Antinociceptive effects of minor cannabinoids, terpenes and flavonoids in Cannabis. Behav Pharmacol 2022; 33:130-157. [PMID: 33709984 DOI: 10.1097/fbp.0000000000000627] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cannabis has been used for centuries for its medicinal properties. Given the dangerous and unpleasant side effects of existing analgesics, the chemical constituents of Cannabis have garnered significant interest for their antinociceptive, anti-inflammatory and neuroprotective effects. To date, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) remain the two most widely studied constituents of Cannabis in animals. These studies have led to formulations of THC and CBD for human use; however, chronic pain patients also use different strains of Cannabis (sativa, indica and ruderalis) to alleviate their pain. These strains contain major cannabinoids, such as THC and CBD, but they also contain a wide variety of cannabinoid and noncannabinoid constituents. Although the analgesic effects of Cannabis are attributed to major cannabinoids, evidence indicates other constituents such as minor cannabinoids, terpenes and flavonoids also produce antinociception against animal models of acute, inflammatory, neuropathic, muscle and orofacial pain. In some cases, these constituents produce antinociception that is equivalent or greater compared to that produced by traditional analgesics. Thus, a better understanding of the extent to which these constituents produce antinociception alone in animals is necessary. The purposes of this review are to (1) introduce the different minor cannabinoids, terpenes, and flavonoids found in Cannabis and (2) discuss evidence of their antinociceptive properties in animals.
Collapse
Affiliation(s)
- Carl Erwin B Rodriguez
- Department of Psychology, California State University, East Bay, Hayward, California, USA
| | | | | |
Collapse
|