1
|
Huang XY, Zhou XX, Yang H, Xu T, Dao JW, Bian L, Wei DX. Directed osteogenic differentiation of human bone marrow mesenchymal stem cells via sustained release of BMP4 from PBVHx-based nanoparticles. Int J Biol Macromol 2024; 265:130649. [PMID: 38453121 DOI: 10.1016/j.ijbiomac.2024.130649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Bone Morphogenetic Protein 4 (BMP4) is crucial for bone and cartilage tissue regeneration, essential in medical tissue engineering, cosmetology, and aerospace. However, its cost and degradation susceptibility pose significant clinical challenges. To enhance its osteogenic activity while reducing dosage and administration frequency, we developed a novel long-acting BMP4 delivery system using poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) (PBVHx) nanoparticles with soybean lecithin-modified BMP4 (sBP-NPs). These nanoparticles promote directed osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through sustained BMP4 release. sBP-NPs exhibited uniform size (100-200 nm) and surface charges, with higher BMP4 entrapment efficiency (82.63 %) compared to controls. After an initial burst release within 24 h, sBP-NPs achieved 80 % cumulative BMP4 release within 20 days, maintaining levels better than control BP-NPs with unmodified BMP4. Co-incubation and nanoparticle uptake experiments confirmed excellent biocompatibility of sBP-NPs, promoting hBMSC differentiation towards osteogenic lineage with increased expression of type I collagen, calcium deposition, and ALP activity (> 20,000 U/g protein) compared to controls. Moreover, hBMSCs treated with sBP-NPs exhibited heightened expression of osteogenic genetic markers, surpassing control groups. Hence, this innovative strategy of sustained BMP4 release from sBP-NPs holds potential to revolutionize bone regeneration in minimally invasive surgery, medical cosmetology or space environments.
Collapse
Affiliation(s)
- Xiao-Yun Huang
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China; Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Xiao-Xiang Zhou
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China
| | - Hui Yang
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China
| | - Tao Xu
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China
| | - Jin-Wei Dao
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong 643002, China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Dai-Xu Wei
- School of Clinical Medicine, Qujing Medical College, Qujing 655000, China; School of Clinical Medicine, Chengdu University, Chengdu, China; Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong 643002, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Pedroso CM, Migliorati CA, Epstein JB, Ribeiro ACP, Brandão TB, Lopes MA, de Goes MF, Santos-Silva AR. Over 300 Radiation Caries Papers: Reflections From the Rearview Mirror. FRONTIERS IN ORAL HEALTH 2022; 3:961594. [PMID: 35911379 PMCID: PMC9330023 DOI: 10.3389/froh.2022.961594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Radiation caries (RC) is an aggressive oral toxicity in head and neck cancer survivors, which develops 6 to 12 months after head and neck radiotherapy. It initially affects the tooth cervical/incisal surfaces, and if not promptly diagnosed/managed, progresses to dental crown amputation and risk of osteoradionecrosis. It results from a multidimensional cluster of treatment-induced oral symptoms, including hyposalivation, dietary changes, and oral hygiene impairment. Although recognized as a frequent complication of radiotherapy and extensively assessed by a myriad of retrospective, in vitro, and in situ studies, RC patients are still orphans of clinically validated methods for risk prediction, prevention, and treatment of early lesions. This review provides a historical overview of science-based concepts regarding RC pathogenesis and treatment, emphasizing the growing demand for interventional clinical studies (randomized trials).
Collapse
Affiliation(s)
- Caique Mariano Pedroso
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Joel B. Epstein
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, United States
- City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | | | - Thaís Bianca Brandão
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, United States
| | - Márcio Ajudarte Lopes
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mário Fernando de Goes
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Campinas, Brazil
| | - Alan Roger Santos-Silva
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Alan Roger Santos-Silva
| |
Collapse
|