1
|
Jiang LL, Zhang XL, Hu HY. Co-Aggregation of TDP-43 with Other Pathogenic Proteins and Their Co-Pathologies in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:12380. [PMID: 39596445 PMCID: PMC11594478 DOI: 10.3390/ijms252212380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Pathological aggregation of a specific protein into insoluble aggregates is a common hallmark of various neurodegenerative diseases (NDDs). In the earlier literature, each NDD is characterized by the aggregation of one or two pathogenic proteins, which can serve as disease-specific biomarkers. The aggregation of these specific proteins is thought to be a major cause of or deleterious result in most NDDs. However, accumulating evidence shows that a pathogenic protein can interact and co-aggregate with other pathogenic proteins in different NDDs, thereby contributing to disease onset and progression synergistically. During the past years, more than one type of NDD has been found to co-exist in some individuals, which may increase the complexity and pathogenicity of these diseases. This article reviews and discusses the biochemical characteristics and molecular mechanisms underlying the co-aggregation and co-pathologies associated with TDP-43 pathology. The TDP-43 aggregates, as a hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), can often be detected in other NDDs, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2). In many cases, TDP-43 is shown to interact and co-aggregate with multiple pathogenic proteins in vitro and in vivo. Furthermore, the co-occurrence and co-aggregation of TDP-43 with other pathogenic proteins have important consequences that may aggravate the diseases. Thus, the current viewpoint that the co-aggregation of TDP-43 with other pathogenic proteins in NDDs and their relevance to disease progression may gain insights into the patho-mechanisms and therapeutic potential of various NDDs.
Collapse
Affiliation(s)
- Lei-Lei Jiang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| | - Xiang-Le Zhang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Yu Hu
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; (L.-L.J.); (X.-L.Z.)
| |
Collapse
|
2
|
Pongrácová E, Buratti E, Romano M. Prion-like Spreading of Disease in TDP-43 Proteinopathies. Brain Sci 2024; 14:1132. [PMID: 39595895 PMCID: PMC11591745 DOI: 10.3390/brainsci14111132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
TDP-43 is a ubiquitous nuclear protein that plays a central role in neurodegenerative disorders collectively known as TDP-43 proteinopathies. Under physiological conditions, TDP-43 is primarily localized to the nucleus, but in its pathological form it aggregates in the cytoplasm, contributing to neuronal death. Given its association with numerous diseases, particularly ALS and FTLD, the mechanisms underlying TDP-43 aggregation and its impact on neuronal function have been extensively investigated. However, little is still known about the spreading of this pathology from cell to cell. Recent research has unveiled the possibility that TDP-43 may possess prion-like properties. Specifically, misfolded TDP-43 aggregates can act as templates inducing conformational changes in native TDP-43 molecules and propagating the misfolded state across neural networks. This review summarizes the mounting and most recent evidence from in vitro and in vivo studies supporting the prion-like hypothesis and its underlying mechanisms. The prion-like behavior of TDP-43 has significant implications for diagnostics and therapeutics. Importantly, emerging strategies such as small molecule inhibitors, immunotherapies, and gene therapies targeting TDP-43 propagation offer promising avenues for developing effective treatments. By elucidating the mechanisms of TDP-43 spreading, we therefore aim to pave the way for novel therapies for TDP-43-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Emma Pongrácová
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149 Trieste, Italy;
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via A. Valerio, 28, 34127 Trieste, Italy
| |
Collapse
|
3
|
Castelli L, Vasta R, Allen SP, Waller R, Chiò A, Traynor BJ, Kirby J. From use of omics to systems biology: Identifying therapeutic targets for amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:209-268. [PMID: 38802176 DOI: 10.1016/bs.irn.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a heterogeneous progressive neurodegenerative disorder with available treatments such as riluzole and edaravone extending survival by an average of 3-6 months. The lack of highly effective, widely available therapies reflects the complexity of ALS. Omics technologies, including genomics, transcriptomic and proteomics have contributed to the identification of biological pathways dysregulated and targeted by therapeutic strategies in preclinical and clinical trials. Integrating clinical, environmental and neuroimaging information with omics data and applying a systems biology approach can further improve our understanding of the disease with the potential to stratify patients and provide more personalised medicine. This chapter will review the omics technologies that contribute to a systems biology approach and how these components have assisted in identifying therapeutic targets. Current strategies, including the use of genetic screening and biosampling in clinical trials, as well as the future application of additional technological advances, will also be discussed.
Collapse
Affiliation(s)
- Lydia Castelli
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rosario Vasta
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Rachel Waller
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Adriano Chiò
- ALS Expert Center,'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Neurology 1, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza of Turin, Turin, Italy
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, United States; RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences, NIH, Rockville, MD, United States; National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, United States; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology,University College London, London, United Kingdom
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
4
|
TDP-43 pathology: from noxious assembly to therapeutic removal. Prog Neurobiol 2022; 211:102229. [DOI: 10.1016/j.pneurobio.2022.102229] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/08/2021] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
|
5
|
Meneses A, Koga S, O’Leary J, Dickson DW, Bu G, Zhao N. TDP-43 Pathology in Alzheimer's Disease. Mol Neurodegener 2021; 16:84. [PMID: 34930382 PMCID: PMC8691026 DOI: 10.1186/s13024-021-00503-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/21/2021] [Indexed: 12/05/2022] Open
Abstract
Transactive response DNA binding protein of 43 kDa (TDP-43) is an intranuclear protein encoded by the TARDBP gene that is involved in RNA splicing, trafficking, stabilization, and thus, the regulation of gene expression. Cytoplasmic inclusion bodies containing phosphorylated and truncated forms of TDP-43 are hallmarks of amyotrophic lateral sclerosis (ALS) and a subset of frontotemporal lobar degeneration (FTLD). Additionally, TDP-43 inclusions have been found in up to 57% of Alzheimer's disease (AD) cases, most often in a limbic distribution, with or without hippocampal sclerosis. In some cases, TDP-43 deposits are also found in neurons with neurofibrillary tangles. AD patients with TDP-43 pathology have increased severity of cognitive impairment compared to those without TDP-43 pathology. Furthermore, the most common genetic risk factor for AD, apolipoprotein E4 (APOE4), is associated with increased frequency of TDP-43 pathology. These findings provide strong evidence that TDP-43 pathology is an integral part of multiple neurodegenerative conditions, including AD. Here, we review the biology and pathobiology of TDP-43 with a focus on its role in AD. We emphasize the need for studies on the mechanisms that lead to TDP-43 pathology, especially in the setting of age-related disorders such as AD.
Collapse
Affiliation(s)
- Axel Meneses
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Justin O’Leary
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
6
|
Llibre-Guerra JJ, Behrens MI, Hosogi ML, Montero L, Torralva T, Custodio N, Longoria-Ibarrola EM, Giraldo-Chica M, Aguillón D, Hardi A, Maestre GE, Contreras V, Doldan C, Duque-Peñailillo L, Hesse H, Roman N, Santana-Trinidad DA, Schenk C, Ocampo-Barba N, López-Contreras R, Nitrini R. Frontotemporal Dementias in Latin America: History, Epidemiology, Genetics, and Clinical Research. Front Neurol 2021; 12:710332. [PMID: 34552552 PMCID: PMC8450529 DOI: 10.3389/fneur.2021.710332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/19/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: The historical development, frequency, and impact of frontotemporal dementia (FTD) are less clear in Latin America than in high-income countries. Although there is a growing number of dementia studies in Latin America, little is known collectively about FTD prevalence studies by country, clinical heterogeneity, risk factors, and genetics in Latin American countries. Methods: A systematic review was completed, aimed at identifying the frequency, clinical heterogeneity, and genetics studies of FTD in Latin American populations. The search strategies used a combination of standardized terms for FTD and related disorders. In addition, at least one author per Latin American country summarized the available literature. Collaborative or regional studies were reviewed during consensus meetings. Results: The first FTD reports published in Latin America were mostly case reports. The last two decades marked a substantial increase in the number of FTD research in Latin American countries. Brazil (165), Argentina (84), Colombia (26), and Chile (23) are the countries with the larger numbers of FTD published studies. Most of the research has focused on clinical and neuropsychological features (n = 247), including the local adaptation of neuropsychological and behavioral assessment batteries. However, there are little to no large studies on prevalence (n = 4), biomarkers (n = 9), or neuropathology (n = 3) of FTD. Conclusions: Future FTD studies will be required in Latin America, albeit with a greater emphasis on clinical diagnosis, genetics, biomarkers, and neuropathological studies. Regional and country-level efforts should seek better estimations of the prevalence, incidence, and economic impact of FTD syndromes.
Collapse
Affiliation(s)
- Jorge J. Llibre-Guerra
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Maria Isabel Behrens
- Departamento de Neurología y Neurocirugía Hospital Clínico Universidad de Chile, Departamento de Neurociencia, Centro de Investigación Clínica Avanzada (CICA), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
- Departamento de Psiquiatría y Neurología, Clínica Alemana de Santiago, Universidad del Desarrollo, Santiago, Chile
| | - Mirna Lie Hosogi
- Departmento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lucia Montero
- Laboratory of Neuropsychology (LNPS), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Teresa Torralva
- Laboratory of Neuropsychology (LNPS), Institute of Cognitive and Translational Neuroscience (INCYT), INECO Foundation, Favaloro University, Buenos Aires, Argentina
| | - Nilton Custodio
- Unidad de Diagnóstico de Deterioro Cognitivo y Prevención de Demencia, Instituto Peruano de Neurociencias, Lima, Peru
| | | | - Margarita Giraldo-Chica
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - David Aguillón
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Angela Hardi
- Becker Medical Library, Washington University School of Medicine, St. Louis, MO, United States
| | - Gladys E. Maestre
- Departament of Neurosciences and Alzheimer's Disease Resource Center for Minority Aging Research, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Valeria Contreras
- Departamento de Neuropsicología, Hospital de Clínicas Dr Manuel Quintela, Universidad de la República, Montevideo, Uruguay
| | - Celeste Doldan
- Departamento de Neuropsicología Cognitiva, Clínica Especializada en Neurociencias Física y Cognitiva CEFYC, Asunción, Paraguay
| | | | - Heike Hesse
- Observatorio COVID-19, Universidad Tecnológica Centroamericana, Tegucigalpa, Honduras
| | - Norbel Roman
- Hospital Social Security of Costa Rica, Universidad de Costa Rica, San Jose, Costa Rica
| | | | - Christian Schenk
- Sección de Neurología, Dept. de Medicina. Recinto de Ciencias Médicas- Universidad de Puerto Rico, San Juan, Puerto Rico
| | - Ninoska Ocampo-Barba
- Instituto Boliviano de Neurociencia Cognitiva, Universidad Autónoma Gabriel René Moreno, Santa Cruz de la Sierra, Bolivia
| | - Ricardo López-Contreras
- Clínica de Memoria, Servicio de Neurología, Instituto Salvadoreño del Seguro Social, San Salvador, El Salvador
| | - Ricardo Nitrini
- Departmento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Farina S, Esposito F, Battistoni M, Biamonti G, Francia S. Post-Translational Modifications Modulate Proteinopathies of TDP-43, FUS and hnRNP-A/B in Amyotrophic Lateral Sclerosis. Front Mol Biosci 2021; 8:693325. [PMID: 34291086 PMCID: PMC8287968 DOI: 10.3389/fmolb.2021.693325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
It has been shown that protein low-sequence complexity domains (LCDs) induce liquid-liquid phase separation (LLPS), which is responsible for the formation of membrane-less organelles including P-granules, stress granules and Cajal bodies. Proteins harbouring LCDs are widely represented among RNA binding proteins often mutated in ALS. Indeed, LCDs predispose proteins to a prion-like behaviour due to their tendency to form amyloid-like structures typical of proteinopathies. Protein post-translational modifications (PTMs) can influence phase transition through two main events: i) destabilizing or augmenting multivalent interactions between phase-separating macromolecules; ii) recruiting or excluding other proteins and/or nucleic acids into/from the condensate. In this manuscript we summarize the existing evidence describing how PTM can modulate LLPS thus favouring or counteracting proteinopathies at the base of neurodegeneration in ALS.
Collapse
Affiliation(s)
- Stefania Farina
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy.,University School for Advanced Studies IUSS, Pavia, Italy
| | - Francesca Esposito
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy.,Università Degli Studi di Pavia, Pavia, Italy
| | | | - Giuseppe Biamonti
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy
| | - Sofia Francia
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" - Consiglio Nazionale delle Ricerce (CNR), Pavia, Italy
| |
Collapse
|
8
|
Thammisetty SS, Renaud L, Picher-Martel V, Weng YC, Calon F, Saikali S, Julien JP, Kriz J. Targeting TDP-43 Pathology Alleviates Cognitive and Motor Deficits Caused by Chronic Cerebral Hypoperfusion. Neurotherapeutics 2021; 18:1095-1112. [PMID: 33786804 PMCID: PMC8423945 DOI: 10.1007/s13311-021-01015-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Vascular dementia is one of the most common forms of dementia in aging population. However, the molecular mechanisms involved in development of disease and the link between the cerebrovascular pathology and the cognitive impairments remain elusive. Currently, one common and/or converging neuropathological pathway leading to dementia is the mislocalization and altered functionality of the TDP-43. We recently demonstrated that brain ischemia triggers an age-dependent deregulation of TDP-43 that was associated with exacerbated neurodegeneration. Here, we report that chronic cerebral hypoperfusion in mice (CCH) produced by unilateral common carotid artery occlusion induces cytoplasmic mislocalization of TDP-43 and formation of insoluble phosho-TDP-43 aggregates reminiscent of pathological changes detected in cortical neurons of human brain samples from patients suffering from vascular dementia. Moreover, the CCH in mice caused chronic activation of microglia and innate immune response, development of cognitive deficits, and motor impairments. Oral administration of a novel analog (IMS-088) of withaferin A, an antagonist of nuclear factor-κB essential modulator (NEMO), led to mitigation of TDP-43 pathology, enhancement of autophagy, and amelioration of cognitive/motor deficits in CCH mice. Taken together, our results suggest that targeting TDP-43 pathogenic inclusions may have a disease-modifying effect in dementia caused by chronic brain hypoperfusion.
Collapse
Affiliation(s)
- Sai Sampath Thammisetty
- CERVO Brain Research Centre, Quebec City, Canada
- Faculty of Pharmacy, Université Laval, Quebec City, Canada
| | | | - Vincent Picher-Martel
- CERVO Brain Research Centre, Quebec City, Canada
- Pathology Department of the CHU de Québec, Quebec City, Canada
| | | | - Frédéric Calon
- Pathology Department of the CHU de Québec, Quebec City, Canada
- Faculty of Pharmacy, Université Laval, Quebec City, Canada
| | - Stephan Saikali
- Research Centre of the CHU de Québec, Quebec City, Canada
- Pathology Department of the CHU de Québec, Quebec City, Canada
| | - Jean-Pierre Julien
- CERVO Brain Research Centre, Quebec City, Canada
- Department of Psychiatry and Neuroscience, Facultyof Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardière, G1J2G3, Quebec City, Canada
| | - Jasna Kriz
- CERVO Brain Research Centre, Quebec City, Canada.
- Department of Psychiatry and Neuroscience, Facultyof Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardière, G1J2G3, Quebec City, Canada.
| |
Collapse
|
9
|
Stevens CH, Guthrie NJ, van Roijen M, Halliday GM, Ooi L. Increased Tau Phosphorylation in Motor Neurons From Clinically Pure Sporadic Amyotrophic Lateral Sclerosis Patients. J Neuropathol Exp Neurol 2020; 78:605-614. [PMID: 31131395 DOI: 10.1093/jnen/nlz041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the progressive degeneration of motor neurons. There is a pathological and genetic link between ALS and frontotemporal lobar degeneration (FTLD). Although FTLD is characterized by abnormal phosphorylated tau deposition, it is unknown whether tau is phosphorylated in ALS motor neurons. Therefore, this study assessed tau epitopes that are commonly phosphorylated in FTLD, including serine 396 (pS396), 214 (pS214), and 404 (pS404) in motor neurons from clinically pure sporadic ALS cases compared with controls. In ALS lower motor neurons, tau pS396 was observed in the nucleus or the nucleus and cytoplasm. In ALS upper motor neurons, tau pS396 was observed in the nucleus, cytoplasm, or both the nucleus and cytoplasm. Tau pS214 and pS404 was observed only in the cytoplasm of upper and lower motor neurons in ALS. The number of motor neurons (per mm2) positive for tau pS396 and pS214, but not pS404, was significantly increased in ALS. Furthermore, there was a significant loss of phosphorylated tau-negative motor neurons in ALS compared with controls. Together, our data identified a complex relationship between motor neurons positive for tau phosphorylated at specific residues and disease duration, suggesting that tau phosphorylation plays a role in ALS.
Collapse
Affiliation(s)
- Claire H Stevens
- School of Chemistry and Molecular Bioscience, University of Wollongong.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Natalie J Guthrie
- School of Chemistry and Molecular Bioscience, University of Wollongong.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | | | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Camperdown, New South Wales, Australia
| | - Lezanne Ooi
- School of Chemistry and Molecular Bioscience, University of Wollongong.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
10
|
Wong P, Ho WY, Yen YC, Sanford E, Ling SC. The vulnerability of motor and frontal cortex-dependent behaviors in mice expressing ALS-linked mutation in TDP-43. Neurobiol Aging 2020; 92:43-60. [PMID: 32422502 DOI: 10.1016/j.neurobiolaging.2020.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/18/2020] [Accepted: 03/29/2020] [Indexed: 02/01/2023]
Abstract
TDP-43 aggregates are the defining pathological hallmark for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Strikingly, these TDP-43 proteinopathies are also found in other neurodegenerative diseases, including Alzheimer's disease and are prevalent in the brains of old-aged humans. Furthermore, disease-causal mutations in TDP-43 have been identified for ALS and FTD. Collectively, the evidence indicates that TDP-43 dysfunctions lead to motor and cognitive deficits. To determine whether the mouse line expressing an ALS-linked mutation in TDP-43 (Q331K) can be used to study ALS-FTD spectrum disorders, we performed a systematic and longitudinal behavioral assessment that covered motor and cognitive functions. Deficits in motor and cognitive abilities were observed as early as 3 months of age and persisted through to 12 months of age. Within the cognitive modalities, the hippocampus-mediated spatial learning and memory, and contextual fear conditioning, were normal; whereas the frontal cortex-mediated working memory and cognitive flexibility were impaired. Biochemically, the human TDP-43 transgene downregulates endogenous mouse TDP-43 mRNA and protein, resulting in human TDP-43 protein that is comparable with the physiological level in cerebral cortex and hippocampus. Furthermore, Q331K TDP-43 is largely retained at the nucleus without apparent aggregates. Taken together, our data suggest that motor and frontal cortex may be more vulnerable to disease-linked mutation in TDP-43 and, this mouse model may be used to assess ALS-FTD-related spectrum diseases and the molecular underpinnings associated with the phenotypes.
Collapse
Affiliation(s)
- Peiyan Wong
- Department of Pharmacology, National University of Singapore, Singapore
| | - Wan Yun Ho
- Department of Physiology, National University of Singapore, Singapore
| | - Yi-Chun Yen
- Department of Physiology, National University of Singapore, Singapore
| | - Emma Sanford
- Department of Physiology, National University of Singapore, Singapore
| | - Shuo-Chien Ling
- Department of Physiology, National University of Singapore, Singapore; Department of Neurobiology/Ageing Programme, National University of Singapore, Singapore; Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore.
| |
Collapse
|
11
|
Motor neuron preservation and decrease of in vivo TDP-43 phosphorylation by protein CK-1δ kinase inhibitor treatment. Sci Rep 2020; 10:4449. [PMID: 32157143 PMCID: PMC7064575 DOI: 10.1038/s41598-020-61265-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/25/2020] [Indexed: 01/06/2023] Open
Abstract
Pathogenesis of amyotrophic lateral sclerosis (ALS), a devastating disease where no treatment exists, involves the compartmentalization of the nuclear protein TDP-43 (TAR DNA-binding protein 43) in the cytoplasm which is promoted by its aberrant phosphorylation and others posttranslational modifications. Recently, it was reported that CK-1δ (protein casein kinase-1δ) is able to phosphorylate TDP-43. Here, the preclinical efficacy of a benzothiazole-based CK-1δ inhibitor IGS-2.7, both in a TDP-43 (A315T) transgenic mouse and in a human cell-based model of ALS, is shown. Treatment with IGS-2.7 produces a significant preservation of motor neurons in the anterior horn at lumbar level, a decrease in both astroglial and microglial reactivity in this area, and in TDP-43 phosphorylation in spinal cord samples. Furthermore, the recovery of TDP-43 homeostasis (phosphorylation and localization) in a human-based cell model from ALS patients after treatment with IGS-2.7 is also reported. Moreover, we have shown a trend to increase in CK-1δ mRNA in spinal cord and significantly in frontal cortex of sALS cases. All these data show for the first time the in vivo modulation of TDP-43 toxicity by CK-1δ inhibition with IGS-2.7, which may explain the benefits in the preservation of spinal motor neurons and point to the relevance of CK-1δ inhibitors in a future disease-modifying treatment for ALS.
Collapse
|
12
|
Abstract
INTRODUCTION Nuclear factor TDP-43 is a ubiquitously expressed RNA binding protein that plays a key causative role in several neurodegenerative diseases, especially in the ALS/FTD spectrum. In addition, its aberrant aggregation and expression has been recently observed in other type of diseases, such as myopathies and Niemann-Pick C, a lysosomal storage disease. Areas covered: This review aims to specifically cover the post-translational modifications (PTMs) that can affect TDP-43 function and cellular status both in health and disease. To this date, these include phosphorylation, formation of C-terminal fragments, disulfide bridge formation, ubiquitination, acetylation, and sumoylation. Recently published articles on these subjects have been reviewed in this manuscript. Expert opinion: Targeting aberrant TDP-43 expression in neurodegenerative diseases is a very challenging task due to the fact that both its overexpression and downregulation are considerably toxic to cells. This characteristic makes it difficult to therapeutically target this protein in a generalized manner. An alternative approach could be the identification of specific aberrant PTMs that promote its aggregation or toxicity, and developing novel therapeutic approaches toward their selective modification.
Collapse
Affiliation(s)
- Emanuele Buratti
- a Department of Molecular Pathology , International Centre for Genetic Engineering and Biotechnology (ICGEB) , Trieste , Italy
| |
Collapse
|