1
|
Navarrete-López P, Asselstine V, Maroto M, Lombó M, Cánovas Á, Gutiérrez-Adán A. RNA Sequencing of Sperm from Healthy Cattle and Horses Reveals the Presence of a Large Bacterial Population. Curr Issues Mol Biol 2024; 46:10430-10443. [PMID: 39329972 PMCID: PMC11430805 DOI: 10.3390/cimb46090620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
RNA molecules within ejaculated sperm can be characterized through whole-transcriptome sequencing, enabling the identification of pivotal transcripts that may influence reproductive success. However, the profiling of sperm transcriptomes through next-generation sequencing has several limitations impairing the identification of functional transcripts. In this study, we explored the nature of the RNA sequences present in the sperm transcriptome of two livestock species, cattle and horses, using RNA sequencing (RNA-seq) technology. Through processing of transcriptomic data derived from bovine and equine sperm cell preparations, low mapping rates to the reference genomes were observed, mainly attributed to the presence of ribosomal RNA and bacteria in sperm samples, which led to a reduced sequencing depth of RNAs of interest. To explore the presence of bacteria, we aligned the unmapped reads to a complete database of bacterial genomes and identified bacteria-associated transcripts which were characterized. This analysis examines the limitations associated with sperm transcriptome profiling by reporting the nature of the RNA sequences among which bacterial RNA was found. These findings can aid researchers in understanding spermatozoal RNA-seq data and pave the way for the identification of molecular markers of sperm performance.
Collapse
Affiliation(s)
| | - Victoria Asselstine
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - María Maroto
- Department of Animal Reproduction, INIA-CSIC, 28040 Madrid, Spain
| | - Marta Lombó
- Department of Animal Reproduction, INIA-CSIC, 28040 Madrid, Spain
| | - Ángela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alfonso Gutiérrez-Adán
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Bishop RC, Migliorisi A, Holmes JR, Kemper AM, Band M, Austin S, Aldridge B, Wilkins PA. Microbial populations vary between the upper and lower respiratory tract, but not within biogeographic regions of the lung of healthy horses. J Equine Vet Sci 2024; 140:105141. [PMID: 38944129 DOI: 10.1016/j.jevs.2024.105141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/01/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024]
Abstract
Understanding normal microbial populations within areas of the respiratory tract is essential, as variable regional conditions create different niches for microbial flora, and proliferation of commensal microbes likely contributes to clinical respiratory disease. The objective was to describe microbial population variability between respiratory tract locations in healthy horses. Samples were collected from four healthy adult horses by nasopharyngeal lavage (NPL), transtracheal aspirate (TTA), and bronchoalveolar lavage (BAL) of six distinct regions within the lung. Full-length 16S ribosomal DNA sequencing and microbial profiling analysis was performed. There was a large amount of diversity, with over 1797 ASVs identified, reduced to 94 taxa after tip agglomeration and prevalence filtering. Number of taxa and diversity were highly variable across horses, sample types, and BAL locations. Firmicutes, proteobacteria, and actinobacteria were the predominant phyla. There was a significant difference in richness (Chao1, p = 0.02) and phylogenetic diversity (FaithPD, p = 0.01) between NPL, TTA, and BAL. Sample type (p = 0.03) and horse (p = 0.005) contributed significantly to Bray-Curtis compositional diversity, while Weighted Unifrac metric was only affected by simplified sample type (NPL and TTA vs BAL, p = 0.04). There was no significant effect of BAL locations within the lung with alpha or beta diversity statistical tests. Overall findings support diverse microbial populations that were variable between upper and lower respiratory tract locations, but with no apparent difference in microbial populations of the six biogeographic regions of the lung, suggesting that BAL fluid obtained blindly by standard clinical techniques may be sufficient for future studies in healthy horses.
Collapse
Affiliation(s)
- Rebecca C Bishop
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA.
| | | | - Jessica R Holmes
- High Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, USA
| | - Ann M Kemper
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| | - Mark Band
- Functional Genomics Unit, Roy J. Carver Biotechnology Center, University of Illinois, Urbana, IL, USA; Institute of Evolution, University of Haifa, Israel
| | - Scott Austin
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| | - Brian Aldridge
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| | - Pamela A Wilkins
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, USA
| |
Collapse
|
3
|
Kilama J, Dahlen CR, Reynolds LP, Amat S. Contribution of the seminal microbiome to paternal programming. Biol Reprod 2024; 111:242-268. [PMID: 38696371 PMCID: PMC11327320 DOI: 10.1093/biolre/ioae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
The field of Developmental Origins of Health and Disease has primarily focused on maternal programming of offspring health. However, emerging evidence suggests that paternal factors, including the seminal microbiome, could potentially play important roles in shaping the developmental trajectory and long-term offspring health outcomes. Historically, the microbes present in the semen were regarded as inherently pathogenic agents. However, this dogma has recently been challenged by the discovery of a diverse commensal microbial community within the semen of healthy males. In addition, recent studies suggest that the transmission of semen-associated microbes into the female reproductive tract during mating has potentials to not only influence female fertility and embryo development but could also contribute to paternal programming in the offspring. In this review, we summarize the current knowledge on the seminal microbiota in both humans and animals followed by discussing their potential involvement in paternal programming of offspring health. We also propose and discuss potential mechanisms through which paternal influences are transmitted to offspring via the seminal microbiome. Overall, this review provides insights into the seminal microbiome-based paternal programing, which will expand our understanding of the potential paternal programming mechanisms which are currently focused primarily on the epigenetic modifications, oxidative stresses, and cytokines.
Collapse
Affiliation(s)
- Justine Kilama
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, NDSU Department 7630, Fargo, ND 58108-6050, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, NDSU Department 7520, Fargo, ND 58108-6050, USA
| |
Collapse
|
4
|
Núñez-Montero K, Leal K, Rojas-Villalta D, Castro M, Larronde C, Wagenknecht L, Contreras MJ. 16s gene metagenomic characterization in healthy stallion semen. Res Vet Sci 2024; 176:105354. [PMID: 38981836 DOI: 10.1016/j.rvsc.2024.105354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Studies on the bacterial composition of seminal samples have primarily focused on species isolated from semen and their effects on fertility and reproductive health. Culture-independent techniques, such as 16S rRNA gene sequencing and shotgun metagenomics, have revolutionized our ability to identify unculturable bacteria, which comprise >90% of the microbiome. These techniques allow for comprehensive analysis of microbial communities in seminal samples, shedding light on their interactions and roles. In this study, we characterized the taxonomic diversity of seminal microbial communities in healthy stallions using 16S rRNA gene sequencing. Semen samples were collected from four stallions during the reproductive season, and DNA was extracted for sequencing. The results revealed a diverse array of bacterial taxa, with Firmicutes, Bacteroidota, and Proteobacteria being predominant phyla. At the family and genus levels, significant variations were observed among individuals, with individual variability in microbial richness and diversity standing out. Moreover, each stallion showed a distinct microbial fingerprint, indicating the presence of a characteristic microbial core for each stallion. These results underscore the importance of considering individual microbial profiles in understanding reproductive health and fertility outcomes.
Collapse
Affiliation(s)
- Kattia Núñez-Montero
- Facultad de Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Karla Leal
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Dorian Rojas-Villalta
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Macarena Castro
- Doctorado en Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Carolina Larronde
- Facultad de La Salud, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | | | - María José Contreras
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile.
| |
Collapse
|
5
|
Malaluang P, Niazi A, Guo Y, Nagel C, Guimaraes T, Rocha A, Aurich C, Morrell JM. Bacterial diversity in semen from stallions in three European countries evaluated by 16S sequencing. Vet Res Commun 2024; 48:1409-1421. [PMID: 38305959 PMCID: PMC11147884 DOI: 10.1007/s11259-024-10321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
The microbiome plays a significant role in shaping the health and functioning of the systems it inhabits. The seminal microbiome of stallions has implications for the health of the reproductive tract, sperm quality during preservation and antibiotic use in semen extenders. Diverse bacteria are present on the external genital tract and a mix of commensal microorganisms populates various parts of the reproductive tract, influencing the seminal bacterial content. Other sources of bacteria include the environment, semen collection equipment, and personnel. The bacterial load can adversely affect sperm quality and fertility, particularly in artificial insemination, where semen is extended and stored before use. Antibiotics are frequently used to inhibit bacterial growth, but their effectiveness varies depending on the bacterial strains present. The aim of this study was to assess the bacterial diversity in semen from 37 healthy stallions across three European nations (Germany, Portugal, and Sweden) using 16S sequencing. Semen samples were collected from individual stallions at three AI centers; DNA extraction, sequencing, and bioinformatic analysis were performed. Differences in bacterial diversity among the stallions were seen; although bacterial phyla were shared across the regions, differences were observed at the genus level. Climate, husbandry practices, and individual variability likely contribute to these differences. These findings underscore the importance of tailoring antibiotic strategies for semen preservation based on regional bacterial profiles. The study presents a comprehensive approach to understanding the intricacies of the stallion seminal microbiome and its potential implications for reproductive technologies and animal health.
Collapse
Affiliation(s)
- Pongpreecha Malaluang
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
- Faculty of Veterinary Sciences, Mahasarakham University, Maha Sarakham, 40000, Thailand
| | - Adnan Niazi
- SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences (SLU), Uppsala, SE-750 07, Sweden
- Science for Life Laboratory, National Bioinformatics Infrastructure Sweden (NBIS), Uppsala University, Uppsala, SE-752 36, Sweden
| | - Yongzhi Guo
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| | - Christina Nagel
- Graf Lehndorff Institute for Equine Science, University of Veterinary Medicine, Vienna, Austria
| | - Tiago Guimaraes
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
- Center for the Study of Animal Sciences (CECA), ICETA, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Antonio Rocha
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
- Center for the Study of Animal Sciences (CECA), ICETA, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Christine Aurich
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Jane M Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden.
| |
Collapse
|
6
|
Banchi P, Spanoghe L, Maes D, Morrell J, Van Soom A. The reproductive microbiome in dogs: Friend or foe? Vet J 2024; 304:106100. [PMID: 38484870 DOI: 10.1016/j.tvjl.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
The microbiome of the reproductive tract is an area of research in full development. Specifically, the microbiome may be involved in reproductive health, disease, and pregnancy outcomes, as has been shown in humans and animals, including dogs. The aim of the present review was to summarize current knowledge on the microbiome of the canine reproductive tract, to expose the controversial role that some bacterial agents may play in canine subfertility, and to highlight future research perspectives. This review discussed whether the use of antimicrobials in dogs is appropriate to increase reproductive performance and to treat subfertility without proper diagnosis, and the possible use of probiotics to modulate the reproductive canine microbiome. Finally, we indicate areas in which scientific knowledge is currently lacking, and could be promising directions for future research.
Collapse
Affiliation(s)
- Penelope Banchi
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium; Department of Veterinary Sciences, University of Turin, Grugliasco 10095, Italy.
| | - Lotte Spanoghe
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Jane Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala 75007, Sweden
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
7
|
Cooke CG, Gibb Z, Grupen CG, Schemann K, Deshpande N, Harnett JE. Effect of probiotics and prebiotics on the composition of the equine fecal and seminal microbiomes and sperm quality: A pilot study. J Equine Vet Sci 2024; 135:105032. [PMID: 38401778 DOI: 10.1016/j.jevs.2024.105032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Probiotic and prebiotic effects on equine semen and gastrointestinal microbiome composition and sperm quality are unknown. This study aimed to evaluate the effects of pre-, pro- or synbiotic supplementation on fecal and semen microbiome composition and sperm quality parameters of stallions. This Latin square crossover trial involved four miniature pony stallions receiving control diet only, or addition of a pro-, pre- or synbiotic formulation. Full-length 16S rRNA gene amplicon sequencing was used to measure diversity of semen and fecal microbiomes. Total sperm count, total motility, progressive motility, DNA integrity, lipid peroxidation and mitochondrial oxidative stress, biomarkers of sperm quality, were measured after each intervention. A general linear model was employed to analyse and compare microbiome diversity measures and sperm quality data across four time points. Shannon's diversity index (alpha-diversity), and evenness of semen and gastrointestinal microbiomes were significantly different (p<0.001). A trend was observed for prebiotic effects on the diversity indices of the GI microbiome (p= 0.07). No effects of treatments were observed on either semen microbiome or sperm quality. Pre-, pro- and synbiotic supplements showed no negative effect on sperm quality parameters observed. This proof of concept provides preliminary data to inform future studies exploring the relationship between microbiomes and fertility.
Collapse
Affiliation(s)
- C Giselle Cooke
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Zamira Gibb
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Christopher G Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, New South Wales, 2570, Australia
| | - Kathrin Schemann
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Nandan Deshpande
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Joanna E Harnett
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
8
|
Banchi P, Bertolotti L, Spanoghe L, Ali Hassan H, Lannoo J, Domain G, Henzel KS, Gaillard V, Rota A, Van Soom A. Characterization of the semen microbiota of healthy stud dogs using 16S RNA sequencing. Theriogenology 2024; 216:1-7. [PMID: 38141548 DOI: 10.1016/j.theriogenology.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
The reproductive microbiota of male dogs has never been investigated using culture-independent sequencing techniques. The purpose of the present study was to get seminal knowledge on the microbiota of the ejaculate. Specifically, factors as the fraction of the ejaculate, the sperm quality (normospermia, teratozoospermia), and the living environment were evaluated. The sperm-rich and the prostatic fractions of the ejaculate were collected from healthy stud dogs. Following the sperm analysis, samples from twenty animals (normospermic n = 10 and teratozoospermic n = 10) were stored at - 80 °C until further processing including DNA extraction and 16S rRNA sequencing. Alpha- (Shannon index) and beta- (Bray-Curtis, Unweighted UniFrac) diversities were assessed and compared (PERMANOVA) based on the group of samples (biological samples from the ejaculate and controls), the fraction of the ejaculate (sperm-rich and prostatic fractions), the animal group (normospermia and teratozoospermia), and the living environment of the animal (kennel or pet living in-house). The most abundant bacterial phyla in canine semen samples were Proteobacteria, Firmicutes, and Actinobacteria. Overall, the dominant bacterial family was that of Pasteurellaceae The genus Mycoplasma was never detected. No differences in terms of bacterial composition were found based on the fraction of the ejaculate and based on the animal group (P > 0.05). On the other hand, differences in alpha and beta diversities were highlighted based on the living environment (P = 0.001). Overall, the results of the present study provide preliminary insights on dog semen microbiota, opening a new chapter in the field of canine andrology. Our results suggest that the environment may play a role in influencing the reproductive microbiota of male dogs and that the prostatic fraction of the ejaculate can be used for further research as a representative of the semen microbiota.
Collapse
Affiliation(s)
- P Banchi
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium; Department of Veterinary Science, University of Torino, 10095, Grugliasco, Italy.
| | - L Bertolotti
- Department of Veterinary Science, University of Torino, 10095, Grugliasco, Italy
| | - L Spanoghe
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - H Ali Hassan
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - J Lannoo
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - G Domain
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| | - K S Henzel
- Royal Canin Research Center, 30470, Aimargues, France
| | - V Gaillard
- Royal Canin Research Center, 30470, Aimargues, France
| | - A Rota
- Department of Veterinary Science, University of Torino, 10095, Grugliasco, Italy
| | - A Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820, Merelbeke, Belgium
| |
Collapse
|
9
|
Cooke CG, Gibb Z, Grupen CG, Schemann K, Deshpande N, Harnett JE. The semen microbiome of miniature pony stallions. Reprod Fertil Dev 2024; 36:RD23117. [PMID: 38331564 DOI: 10.1071/rd23117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
CONTEXT Little is known about the microbial composition of stallion semen. AIMS To describe the microbiota detected in equine semen of healthy miniature pony stallions. METHODS Semen specimens were collected using a Missouri artificial vagina at a single time point. PacBio (Pacific Biosciences) genomic DNA sequencing of the 16S rRNA gene was performed on these specimens, following which next-generation microbiome bioinformatics platform QIIME2 was used to process fastq files and analyse the amplicon data. The data were categorised into genus, family, class, order and phylum. KEY RESULTS Firmicutes and Bacteroidetes phyla predominated (76%), followed by Proteobacteria (15%). Bacteroidales, Clostridiales and Cardiobacteriales predominated the microbial rank of order (86%). Class was mainly composed of Bacteroidia, Clostridia and Gammaproteobacteria (87%), while family was mainly composed of Porphyromonadaceae , Family_XI and Cardiobacteriaceae (62%). At the level of genus, 80% of the abundance was composed of seven genera, namely Porphyromonas, Suttonella, Peptoniphilus, Fastidiosipila, Ezakiella, Petrimonas and an unknown taxon. CONCLUSIONS The findings indicate that specific microbiota may be characteristic of healthy miniature pony stallions' semen with some inter-individual variations observed. IMPLICATIONS Larger equine studies involving fertile and infertile subjects could be informed by this study and could explore the relationship of the semen microbiome to male fertility.
Collapse
Affiliation(s)
- C Giselle Cooke
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Zamira Gibb
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Christopher G Grupen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Kathrin Schemann
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nandan Deshpande
- Sydney Informatics Hub, Core Research Facilities, The University of Sydney, Sydney, NSW 2006, Australia
| | - Joanna E Harnett
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Zabala SM, Serres C, Montero N, Crespo F, Lorenzo PL, Pérez-Aguilera V, Galán C, Domínguez-Gimbernat M, Oliet A, Moreno S, González-Zorn B, Gutiérrez-Cepeda L. Strategies to Reduce the Use of Antibiotics in Fresh and Chilled Equine Semen. Animals (Basel) 2024; 14:179. [PMID: 38254348 PMCID: PMC10812753 DOI: 10.3390/ani14020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The study assessed the impact of four equine semen processing techniques on sperm quality and microbial load immediately post-processing and after 48 h of refrigeration. The aim was to explore the potential reduction of prophylactic antibiotic usage in semen extenders. Semen from ten adult stallions was collected and processed under a strict hygiene protocol and divided into four aliquots: Simple Centrifugation with antibiotics (SC+), Simple Centrifugation (SC-), Single-Layer Colloidal Centrifugation (CC-), and Filtration (with SpermFilter®) (F-), all in extenders without antibiotics. Sperm motility, viability, and microbial load on three culture media were assessed. No significant differences were observed in the main in the sperm quality parameters among the four protocols post-processing and at 48 h (p < 0.05 or p < 0.1). Microbial loads in Columbia 5% Sheep Blood Agar and Schaedler vitamin K1 5% Sheep Blood Agar mediums were significantly higher (p < 0.10) for raw semen than for CS+, CC-, and F- post-processing. For Sabouraud Dextrose Agar medium, the microbial load was significantly higher (p < 0.10) in raw semen compared to CS+ and F-. No significant differences (p < 0.10) were found in 48 h chilled samples. Regardless of antibiotic presence, the evaluated processing methods, when combined with rigorous hygiene measures, maintained semen quality and reduced microbial load to the same extent as a traditional protocol using antibiotics.
Collapse
Affiliation(s)
- Sonsoles Mercedes Zabala
- Animal Medicine and Surgery Department, Veterinary Faculty, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (S.M.Z.); (C.S.); (F.C.); (C.G.); (M.D.-G.)
- Animal Selection and Reproduction Center, Madrid Institute for Rural, Agricultural and Food Research and Development (IMIDRA), Ctra. Colmenar Viejo a Guadalix de la Sierra, km 1, Colmenar Viejo, 28770 Madrid, Spain; (A.O.); (S.M.)
| | - Consuelo Serres
- Animal Medicine and Surgery Department, Veterinary Faculty, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (S.M.Z.); (C.S.); (F.C.); (C.G.); (M.D.-G.)
| | - Natalia Montero
- Animal Health Department, Veterinary Faculty, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (N.M.); (B.G.-Z.)
| | - Francisco Crespo
- Animal Medicine and Surgery Department, Veterinary Faculty, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (S.M.Z.); (C.S.); (F.C.); (C.G.); (M.D.-G.)
- Centro Militar de Cría Caballar de Ávila (CCFAA), C/Arsenio Gutiérrez Palacios s/n, 05005 Ávila, Spain;
| | - Pedro Luis Lorenzo
- Physiology Department, Veterinary Faculty, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain;
| | - Verónica Pérez-Aguilera
- Centro Militar de Cría Caballar de Ávila (CCFAA), C/Arsenio Gutiérrez Palacios s/n, 05005 Ávila, Spain;
| | - Carmen Galán
- Animal Medicine and Surgery Department, Veterinary Faculty, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (S.M.Z.); (C.S.); (F.C.); (C.G.); (M.D.-G.)
| | - Mónica Domínguez-Gimbernat
- Animal Medicine and Surgery Department, Veterinary Faculty, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (S.M.Z.); (C.S.); (F.C.); (C.G.); (M.D.-G.)
| | - Agustín Oliet
- Animal Selection and Reproduction Center, Madrid Institute for Rural, Agricultural and Food Research and Development (IMIDRA), Ctra. Colmenar Viejo a Guadalix de la Sierra, km 1, Colmenar Viejo, 28770 Madrid, Spain; (A.O.); (S.M.)
| | - Santiago Moreno
- Animal Selection and Reproduction Center, Madrid Institute for Rural, Agricultural and Food Research and Development (IMIDRA), Ctra. Colmenar Viejo a Guadalix de la Sierra, km 1, Colmenar Viejo, 28770 Madrid, Spain; (A.O.); (S.M.)
| | - Bruno González-Zorn
- Animal Health Department, Veterinary Faculty, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (N.M.); (B.G.-Z.)
| | - Luna Gutiérrez-Cepeda
- Animal Medicine and Surgery Department, Veterinary Faculty, UCM, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain; (S.M.Z.); (C.S.); (F.C.); (C.G.); (M.D.-G.)
| |
Collapse
|
11
|
Mocé ML, Esteve IC, Gómez EA, Pérez-Fuentes S, Mocé E. Microbial composition of goat buck's ejaculates is modified by the process of preparing and storing refrigerated semen doses. Theriogenology 2023; 209:202-212. [PMID: 37423044 DOI: 10.1016/j.theriogenology.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Ejaculates present their own microbiota, and a link between ejaculates' microbiota and sperm quality and fertility exists. With the development of artificial insemination in animal breeding, ejaculates must be manipulated by diluting them with extenders and storing them at temperatures below body temperature. The effects that these processes have on the original semen microbiota have never been studied. This study explores the effects of the protocol for preparing refrigerated goat buck semen doses and storing on seminal microbiota. Semen from six adult goat bucks of the Murciano-Granadina breed (24 ejaculates) was used, cooled to 4 °C in a skimmed milk-based extender, and stored at this temperature for 24 h. Samples were taken in different steps: in the raw ejaculates (ejaculates), after dilution with the refrigeration extender (diluted), immediately after reaching 4 °C (chilled 0 h) and the samples refrigerated at 4 °C and stored at this temperature for 24 h (chilled 24 h). Sperm quality (motility and integrity of plasma and acrosomal membrane, and mitochondrial functionality) was also evaluated. Bacterial 16S rRNA sequencing was used to study the seminal microbiota. Our results indicated that both refrigeration and storage at 4 °C negatively affected sperm quality parameters. Preparing semen doses and their subsequent conservation caused a significant change in the bacterial community structure. Raw ejaculates showed a lower Pielou's evenness index than the other samples (diluted, chilled 0 h and chilled 24 h). Ejaculates also had a lower Shannon's diversity index (3.44) than the diluted semen (4.17) and the semen chilled for 24 h (4.43). Regarding beta diversity, significant differences were detected between ejaculates and the other treatments. Differences were also found in unweighted UniFrac distances between the semen chilled for 0 h and that chilled for 24 h. At the genus level, marked effects of preparing doses and their subsequent conservation were also evident: 199 genera that were absent in ejaculates were found in the semen chilled and stored for 24 h; 177 genera that were present in ejaculates disappeared after 24-h refrigeration. In conclusion, the extender and protocol for preparing refrigerated goat buck semen doses considerably modify microbial ejaculate composition.
Collapse
Affiliation(s)
- María Lorena Mocé
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, Valencia, Spain; Unidad Asociada UCH-CEU -IVIA, Valencia, Spain.
| | - Inés Carolina Esteve
- Centro de Investigación y Tecnología Animal (CITA), Instituto Valenciano de Investigaciones Agrarias, Segorbe, Castellón, Spain; Unidad Asociada UCH-CEU -IVIA, Valencia, Spain.
| | - Ernesto A Gómez
- Centro de Investigación y Tecnología Animal (CITA), Instituto Valenciano de Investigaciones Agrarias, Segorbe, Castellón, Spain; Unidad Asociada UCH-CEU -IVIA, Valencia, Spain.
| | - Sara Pérez-Fuentes
- Centro de Investigación y Tecnología Animal (CITA), Instituto Valenciano de Investigaciones Agrarias, Segorbe, Castellón, Spain.
| | - Eva Mocé
- Centro de Investigación y Tecnología Animal (CITA), Instituto Valenciano de Investigaciones Agrarias, Segorbe, Castellón, Spain; Unidad Asociada UCH-CEU -IVIA, Valencia, Spain.
| |
Collapse
|
12
|
Webb EM, Holman DB, Schmidt KN, Crouse MS, Dahlen CR, Cushman RA, Snider AP, McCarthy KL, Amat S. A Longitudinal Characterization of the Seminal Microbiota and Antibiotic Resistance in Yearling Beef Bulls Subjected to Different Rates of Gain. Microbiol Spectr 2023; 11:e0518022. [PMID: 36916922 PMCID: PMC10100376 DOI: 10.1128/spectrum.05180-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
In this study, we evaluated the seminal and fecal microbiota in yearling beef bulls fed a common diet to achieve moderate (1.13 kg/day) or high (1.80 kg/day) rates of weight gain. Semen samples were collected on days 0 and 112 of dietary intervention (n = 19/group) as well as postbreeding (n = 6/group) using electroejaculation, and the microbiota was assessed using 16S rRNA gene sequencing, quantitative PCR (qPCR), and culturing. The fecal microbiota was also evaluated, and its similarity with seminal microbiota was assessed. A subset of seminal bacterial isolates (n = 33) was screened for resistance against 28 antibiotics. A complex and dynamic microbiota was detected in bovine semen, and the community structure was affected by sampling time (R2 = 0.16, P < 0.001). Microbial richness increased significantly from day 0 to day 112, and diversity increased after breeding (P > 0.05). Seminal microbiota remained unaffected by the differential rates of gain, and its overall composition was distinct from fecal microbiota, with only 6% of the taxa shared between them. A total of 364 isolates from 49 different genera were recovered under aerobic and anaerobic culturing. Among these seminal isolates were pathogenic species and those resistant to several antibiotics. Overall, our results suggest that bovine semen harbors a rich and complex microbiota which changes over time and during the breeding season but appears to be resilient to differential gains achieved via a common diet. Seminal microbiota is distinct from the fecal microbiota and harbors potentially pathogenic and antibiotic-resistant bacterial species. IMPORTANCE Increasing evidence from human and other animal species supports the existence of a commensal microbiota in semen and that this seminal microbiota may influence not only sperm quality and fertility but also female reproduction. Seminal microbiota in bulls and its evolution and factors shaping this community, however, remain largely underexplored. In this study, we characterized the seminal microbiota of yearling beef bulls and its response to the bull age, different weight gains, and mating activity. We compared bacterial composition between seminal and fecal microbiota and evaluated the diversity of culturable seminal bacteria and their antimicrobial resistance. Our results obtained from sequencing, culturing, and antibiotic susceptibility testing provide novel information on the taxonomic composition, evolution, and factors shaping the seminal microbiota of yearling beef bulls. This information will serve as an important basis for further understanding of the seminal microbiome and its involvement in reproductive health and fertility in cattle.
Collapse
Affiliation(s)
- Emily M. Webb
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada
| | - Kaycie N. Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Matthew S. Crouse
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Carl R. Dahlen
- Department of Animal Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Robert A. Cushman
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Alexandria P. Snider
- USDA, Agriculture Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Kacie L. McCarthy
- Department of Animal Sciences, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, North Dakota, USA
| |
Collapse
|
13
|
Poole RK, Soffa DR, McAnally BE, Smith MS, Hickman-Brown KJ, Stockland EL. Reproductive Microbiomes in Domestic Livestock: Insights Utilizing 16S rRNA Gene Amplicon Community Sequencing. Animals (Basel) 2023; 13:485. [PMID: 36766374 PMCID: PMC9913168 DOI: 10.3390/ani13030485] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Advancements in 16S rRNA gene amplicon community sequencing have vastly expanded our understanding of the reproductive microbiome and its role in fertility. In humans, Lactobacillus is the overwhelmingly dominant bacteria within reproductive tissues and is known to be commensal and an indicator of fertility in women and men. It is also known that Lactobacillus is not as largely abundant in the reproductive tissues of domestic livestock species. Thus, the objective of this review is to summarize the research to date on both female and male reproductive microbiomes in domestic livestock species (i.e., dairy cattle, beef cattle, swine, small ruminants, and horses). Having a comprehensive understanding of reproductive microbiota and its role in modulating physiological functions will aid in the development of management and therapeutic strategies to improve reproductive efficiency.
Collapse
Affiliation(s)
- Rebecca K. Poole
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | | | | | | | | | | |
Collapse
|
14
|
Contreras MJ, Núñez-Montero K, Bruna P, Zárate A, Pezo F, García M, Leal K, Barrientos L. Mammals' sperm microbiome: current knowledge, challenges, and perspectives on metagenomics of seminal samples. Front Microbiol 2023; 14:1167763. [PMID: 37138598 PMCID: PMC10149849 DOI: 10.3389/fmicb.2023.1167763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Bacterial growth is highly detrimental to sperm quality and functionality. However, during the last few years, using sequencing techniques with a metagenomic approach, it has been possible to deepen the study of bacteria-sperm relationships and describe non-culturable species and synergistic and antagonistic relationships between the different species in mammalian animals. We compile the recent metagenomics studies performed on mammalian semen samples and provide updated evidence to understand the importance of the microbial communities in the results of sperm quality and sperm functionality of males, looking for future perspectives on how these technologies can collaborate in the development of andrological knowledge.
Collapse
Affiliation(s)
- María José Contreras
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco, Chile
| | - Kattia Núñez-Montero
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Temuco, Chile
| | - Pablo Bruna
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco, Chile
| | - Ana Zárate
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco, Chile
| | - Felipe Pezo
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomás, Santiago, Chile
| | - Matías García
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco, Chile
| | - Karla Leal
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco, Chile
| | - Leticia Barrientos
- Extreme Environments Biotechnology Lab, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco, Chile
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile
- *Correspondence: Leticia Barrientos,
| |
Collapse
|
15
|
Luecke SM, Webb EM, Dahlen CR, Reynolds LP, Amat S. Seminal and vagino-uterine microbiome and their individual and interactive effects on cattle fertility. Front Microbiol 2022; 13:1029128. [PMID: 36425035 PMCID: PMC9679222 DOI: 10.3389/fmicb.2022.1029128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/19/2022] [Indexed: 09/13/2023] Open
Abstract
Reproductive failure is a major economical drain on cow-calf operations across the globe. It can occur in both males and females and stem from prenatal and postnatal influences. Therefore, the cattle industry has been making efforts to improve fertility and the pregnancy rate in cattle herds as an attempt to maintain sustainability and profitability of cattle production. Despite the advancements made in genetic selection, nutrition, and the implementation of various reproductive technologies, fertility rates have not significantly improved in the past 50 years. This signifies a missing factor or factors in current reproductive management practices that influence successful fertilization and pregnancy. Emerging lines of evidence derived from human and other animals including cattle suggest that the microbial continuum along the male and female reproductive tracts are associated with male and female fertility-that is, fertilization, implantation, and pregnancy success-highlighting the potential for harnessing the male and female reproductive microbiome to improve fertility in cattle. The objective of this narrative review is to provide an overview of the recent studies on the bovine seminal and vagino-uterine microbiome and discuss individual and interactive roles of these microbial communities in defining cattle fertility.
Collapse
Affiliation(s)
- Sarah M. Luecke
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Emily M. Webb
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Lawrence P. Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, United States
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
16
|
Mocé ML, Esteve IC, Pérez-Fuentes S, Gómez EA, Mocé E. Microbiota in Goat Buck Ejaculates Differs Between Breeding and Non-breeding Seasons. Front Vet Sci 2022; 9:867671. [PMID: 35647092 PMCID: PMC9136232 DOI: 10.3389/fvets.2022.867671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023] Open
Abstract
Changes in semen microbiota are associated with alterations to sperm quality and fertility. However, the microbiota from most livestock species has not yet been studied. Goats are seasonal breeders, but semen microbiota has never been described in this species, and it is unknown how seasonality affects it. Our study objective is 2-fold: to describe the microbiota in goat buck ejaculates and to determine if it differs between breeding and non-breeding seasons. Semen from six males of the Murciano-Granadina breed was collected during both seasons. Two replicates were performed per male and season on different days. The microbiota was characterized by genomic sequencing technology. Sperm quality was also evaluated. Repetition was not significant for the studied variables. Sperm velocities were higher for the breeding than for the non-breeding season. The ejaculates from both seasons also differed in the proportion of apoptotic spermatozoa. The five dominant phyla were Firmicutes, Proteobacteria, Fusobacteria, Actinobacteria, and Bacteroidetes during the breeding season and Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria during the non-breeding season. The dominant genus during both seasons was Ureaplasma. Differences in microbial community structure (the beta diversity) were found. A decrease in the relative abundance of the genus Faecalibacterium and an increase in the genera Sphingomonas and Halomonas were observed in the ejaculates collected during the breeding season. Sphingomonas and Faecalibacterium abundance favorably and unfavorably correlated with sperm quality, respectively. In conclusion, the semen microbiota from goat bucks varies between breeding and non-breeding seasons, and the microbiota remains stable for 7 days within a season. In addition, the genera Sphingomonas and Faecalibacterium could be possible biomarkers of semen quality in goat bucks. These results contribute to an in-depth understanding of the effects of reproductive seasonality on goat buck ejaculates.
Collapse
Affiliation(s)
- María Lorena Mocé
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology (PASAPTA), Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
| | - Inés Carolina Esteve
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Sara Pérez-Fuentes
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Ernesto A. Gómez
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Eva Mocé
- Unidad Asociada UCH-CEU – IVIA, Valencia, Spain
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
- *Correspondence: Eva Mocé
| |
Collapse
|
17
|
The Semen Microbiome and Semen Parameters in Healthy Stallions. Animals (Basel) 2022; 12:ani12050534. [PMID: 35268102 PMCID: PMC8908834 DOI: 10.3390/ani12050534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Stallion infertility is a major cause of concern in the horse industry. Despite zootechnics advances, sub- or infertile animals appear in stud farms without a toxic, genetic, or nutritional reason. Recent research in human andrology has opened the door for a new, plausible factor that affects sperm quality: seminal microflora. In recent years, there has been an increasing amount of evidence regarding the relationship between different seminal flora compositions and male fertility. However, little has been studied in veterinary science, including horses. Therefore, the objective of this study was to examine associations with the presence of bacteria families in horse semen with five sperm quality parameters: concentration, total number of spermatozoa, total and progressive sperm motility, and DNA fragmentation. Our study detected a correlation between the presence of the Peptoniphilaceae family and higher total motility and the presence of Clostridiales Incertae Sedis XI and lower progressive motility. These changes in seminal flora may contribute to the idiopathically poorer sperm quality in certain animals. Although further mechanisms behind bacteria–spermatozoa interactions are unknown, these associations are already leading to a new therapeutic approach to infertility: the use of prebiotics, which has already yielded promising results in human andrology. Abstract Despite the advances in reproductive technology, there is still a considerable number of low sperm quality cases in stallions. Recent studies in humans have detected several seminal microflora–spermatozoa associations behind some idiopathic infertility cases. However, no studies are available on horses, and there is limited information on the microflora present in stallion ejaculates. Accordingly, the objective of this study was to examine associations to the presence of bacteria families with five sperm quality parameters: concentration, total number of spermatozoa, total and progressive motility, and DNA fragmentation. Samples were cryopreserved after their extraction. High-speed homogenization using grinding media was performed for cell disruption. Family identification was performed via 16S rRNA sequencing. Bacterial families were only considered if the relative abundance was higher than 1%. Only two families appeared to have a correlation with two sperm quality parameters. Peptoniphilaceae correlated positively with total sperm motility, whereas Clostridiales Incertae Sedis XI correlated negatively with progressive motility. No significant differences were found for the rest of the parameters. In conclusion, the seminal microbiome may affect spermatozoa activity. Our findings are based on statistical associations; thus, further studies are needed to understand the internal interactions between seminal flora and cells.
Collapse
|