1
|
Ahn Y, An JH, Yang HJ, Lee WJ, Lee SH, Park YH, Lee JH, Lee HJ, Lee SH, Kim SU. Blood vessel organoids generated by base editing and harboring single nucleotide variation in Notch3 effectively recapitulate CADASIL-related pathogenesis. Mol Neurobiol 2024; 61:9171-9183. [PMID: 38592587 PMCID: PMC11496345 DOI: 10.1007/s12035-024-04141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024]
Abstract
Human blood vessel organoids (hBVOs) offer a promising platform for investigating vascular diseases and identifying therapeutic targets. In this study, we focused on in vitro modeling and therapeutic target finding of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), the most common form of hereditary stroke disorder caused by mutations in the NOTCH3 gene. Despite the identification of these mutations, the underlying pathological mechanism is elusive, and effective therapeutic approaches are lacking. CADASIL primarily affects the blood vessels in the brain, leading to ischemic strokes, migraines, and dementia. By employing CRISPR/Cas9 base-editing technology, we generated human induced pluripotent stem cells (hiPSCs) carrying Notch3 mutations. These mutant hiPSCs were differentiated into hBVOs. The NOTCH3 mutated hBVOs exhibited CADASIL-like pathology, characterized by a reduced vessel diameter and degeneration of mural cells. Furthermore, we observed an accumulation of Notch3 extracellular domain (Notch3ECD), increased apoptosis, and cytoskeletal alterations in the NOTCH3 mutant hBVOs. Notably, treatment with ROCK inhibitors partially restored the disconnection between endothelial cells and mural cells in the mutant hBVOs. These findings shed light on the pathogenesis of CADASIL and highlight the potential of hBVOs for studying and developing therapeutic interventions for this debilitating human vascular disorder.
Collapse
Affiliation(s)
- Yujin Ahn
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungcheongbuk-do, 28116, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Korea
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, United States
| | - Ju-Hyun An
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungcheongbuk-do, 28116, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Korea
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, United States
| | - Hae-Jun Yang
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungcheongbuk-do, 28116, Korea
| | - Wi-Jae Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, 28116, Korea
| | - Sang-Hee Lee
- Center for Research Equipment (104-Dong), Korea Basic Science Institute, Ochang, Cheongju, Chungbuk, 28119, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungcheongbuk-do, 28116, Korea
| | - Jong-Hee Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, 28116, Korea
| | - Hong J Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Korea
- Research Institute, huMetaCELL Inc., Gyeonggi-do, Korea
| | - Seung Hwan Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Chungcheongbuk-do, 28116, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Korea.
| |
Collapse
|
2
|
Fu Y, Shen W, Bai H, Zhang Z, Cao Z, Liu Z, Yang C, Sun S, Wang L, Ling Y, Zhang Z, Cao H. Roles of Y-27632 on sheep sperm metabolism. J Anim Sci 2024; 102:skae020. [PMID: 38263469 PMCID: PMC10889731 DOI: 10.1093/jas/skae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/20/2024] [Indexed: 01/25/2024] Open
Abstract
To investigate the effect of Y-27632 on low-temperature metabolism of sheep sperm, different concentrations of Y-27632 were added to sheep semen at 4 °C in this experiment to detect indicators such as sperm motility, plasma membrane, acrosome, antioxidant performance, mitochondrial membrane potential (MMP), and metabolomics. The results showed that the addition of 20 µM Y-27632 significantly increased sperm motility, plasma membrane integrity rate, acrosome integrity rate, antioxidant capacity, MMP level, significantly increased sperm adenosine triphosphate (ATP) and total cholesterol content, and significantly reduced sperm Ca2+ content. In metabolomics analysis, compared with the control group, the 20 µM Y-27632 group screened 20 differential metabolites, mainly involved in five metabolic pathways, with the most significant difference in Histidine metabolism (P = 0.001). The results confirmed that Y-27632 significantly improved the quality of sheep sperm preservation under low-temperature conditions.
Collapse
Affiliation(s)
- Yu Fu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Wenzheng Shen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Haiyu Bai
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhiyu Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zhikun Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Zibo Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Chao Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Shixin Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Lei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
| | - Hongguo Cao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, PR China
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, PR China
| |
Collapse
|