1
|
Toro-Tobón G, Alvarez-Flórez F, Mariño-Blanco HD, Melgarejo LM. Foliar Functional Traits of Resource Island-Forming Nurse Tree Species from a Semi-Arid Ecosystem of La Guajira, Colombia. PLANTS 2022; 11:plants11131723. [PMID: 35807675 PMCID: PMC9269082 DOI: 10.3390/plants11131723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 01/05/2023]
Abstract
Semi-arid environments characterized by low rainfall are subject to soil desertification processes. These environments have heterogeneous landscapes with patches of vegetation known as resource islands that are generated by nurse species that delay the desertification process because they increase the availability of water and nutrients in the soil. The study aimed to characterize some foliar physiological, biochemical, and anatomical traits of three nurse tree species that form resource islands in the semi-arid environment of La Guajira, Colombia, i.e., Haematoxylum brasiletto, Pithecellobium dulce, and Pereskia guamacho. The results showed that H. brasiletto and P. dulce have sclerophyllous strategies, are thin (0.2 and 0.23 mm, respectively), and have a high leaf dry matter content (364.8 and 437.47 mg/g). Moreover, both species have a high photochemical performance, reaching Fv/Fm values of 0.84 and 0.82 and PIABS values of 5.84 and 4.42, respectively. These results agree with the OJIP curves and JIP parameters. Both species had a compact leaf with a similar dorsiventral mesophyll. On the other hand, P. guamacho has a typical succulent, equifacial leaf with a 97.78% relative water content and 0.81 mm thickness. This species had the lowest Fv/Fm (0.73) and PIABS (1.16) values and OJIP curve but had the highest energy dissipation value (DIo/RC).
Collapse
|
2
|
Wright CL, de Lima ALA, de Souza ES, West JB, Wilcox BP. Plant functional types broadly describe water use strategies in the Caatinga, a seasonally dry tropical forest in northeast Brazil. Ecol Evol 2021; 11:11808-11825. [PMID: 34522343 PMCID: PMC8427645 DOI: 10.1002/ece3.7949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/11/2022] Open
Abstract
In seasonally dry tropical forests, plant functional type can be classified as deciduous low wood density, deciduous high wood density, or evergreen high wood density species. While deciduousness is often associated with drought-avoidance and low wood density is often associated with tissue water storage, the degree to which these functional types may correspond to diverging and unique water use strategies has not been extensively tested.We examined (a) tolerance to water stress, measured by predawn and mid-day leaf water potential; (b) water use efficiency, measured via foliar δ13C; and (c) access to soil water, measured via stem water δ18O.We found that deciduous low wood density species maintain high leaf water potential and low water use efficiency. Deciduous high wood density species have lower leaf water potential and variable water use efficiency. Both groups rely on shallow soil water. Evergreen high wood density species have low leaf water potential, higher water use efficiency, and access alternative water sources. These findings indicate that deciduous low wood density species are drought avoiders, with a specialized strategy for storing root and stem water. Deciduous high wood density species are moderately drought tolerant, and evergreen high wood density species are the most drought tolerant group.Synthesis. Our results broadly support the plant functional type framework as a way to understand water use strategies, but also highlight species-level differences.
Collapse
Affiliation(s)
- Cynthia L. Wright
- Environmental Sciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
- Ecology and Conservation BiologyTexas A&M UniversityCollege StationTXUSA
| | - André L. A. de Lima
- Universidade Federal Rural de Pernambuco/Unidade Acadêmica de Serra Talhada (UFRPE/UAST)Serra TalhadaBrasil
| | - Eduardo S. de Souza
- Universidade Federal Rural de Pernambuco/Unidade Acadêmica de Serra Talhada (UFRPE/UAST)Serra TalhadaBrasil
| | - Jason B. West
- Ecology and Conservation BiologyTexas A&M UniversityCollege StationTXUSA
| | - Bradford P. Wilcox
- Ecology and Conservation BiologyTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
3
|
Santos MGMD, Sousa ADS, Neves SPS, Rossatto DR, Miranda LDPD, Funch LS. Drought responses and phenotypic plasticity of Maprounea guianensis populations in humid and dry tropical forests. RODRIGUÉSIA 2021. [DOI: 10.1590/2175-7860202172077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract The wide distribution of Maprounea guianensis populations in contrasting environments (dry and humid forests) in the Chapada Diamantina, northeastern Brazil, can indicate the phenotypic plasticity of this species in relation to seasonal rainfall, drought regimes, and soil characteristics at different sites. Functional traits were measured in five individuals in each vegetation types. Water potential, succulence, thickness and density leaf, were evaluated during the dry and rainy periods; wood density and the saturated water content of the wood were evaluated in rainy period. Rainfall was monitored monthly for two years. The functional traits and the phenotypic plasticity indices (PPI) were submitted to analysis of variance. Our results demonstrated seasonal and spatial variations in plant functional traits. We found a low capacity for storing water in leaves and woody tissues, associated with soil properties and the seasonal rainfall/drought regimes, conditioning water potential variations that were greatest during the rainy season. Local environmental parameters influenced variations in the functional traits of M. guianensis populations, reflecting phenotypic plasticity. We highlight the connections between drought regimes and plant responses, demonstrating the importance of functional traits associated with water availability (especially water potential). Our study evidences the factors associated with the wide distribution of M. guianensis.
Collapse
|
4
|
de Souza ACP, da Costa RC. Differences in leaf phenology between juvenile and adult individuals of two tree species in a seasonally dry tropical woodland. AUSTRAL ECOL 2019. [DOI: 10.1111/aec.12851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Rafael Carvalho da Costa
- Biology Department; Federal University of Ceara - UFC; Building 906, Campus do Pici 60440-900 Fortaleza Brazil
| |
Collapse
|
5
|
Holanda AER, Souza BC, Carvalho ECD, Oliveira RS, Martins FR, Muniz CR, Costa RC, Soares AA. How do leaf wetting events affect gas exchange and leaf lifespan of plants from seasonally dry tropical vegetation? PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:1097-1109. [PMID: 31251437 DOI: 10.1111/plb.13023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Foliar uptake of dew is likely an important mechanism of water acquisition for plants from tropical dry environments. However, there is still limited experimental evidence describing the anatomical pathways involved in this process and the effects of this water subsidy on the maintenance of gas exchange and leaf lifespan of species from seasonally dry tropical vegetation such as the Brazilian caatinga. We performed scanning electron, bright-field and confocal microscopic analyses and used apoplastic tracers to examine the foliar water uptake (FWU) routes in four woody species with different foliar phenology and widely distributed in the caatinga. Leaves of plants subjected to water stress were exposed to dew simulation to evaluate the effects of the FWU on leaf water potentials, gas exchange and leaf lifespan. All species absorbed water through their leaf cuticles and/or peltate trichomes but FWU capacity differed among species. Leaf wetting by dew increased leaf lifespan duration up to 36 days compared to plants in the drought treatment. A positive effect on leaf gas exchange and new leaf production was only observed in the anisohydric and evergreen species. We showed that leaf wetting by dew is relevant for the physiology and leaf lifespan of plants from seasonally dry tropical vegetation, especially for evergreen species.
Collapse
Affiliation(s)
- A E R Holanda
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - B C Souza
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - E C D Carvalho
- Graduate Program in Ecology and Natural Resources, Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - R S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - F R Martins
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - C R Muniz
- Embrapa Tropical Agroindustry, Fortaleza, Brazil
| | - R C Costa
- Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| | - A A Soares
- Department of Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
6
|
Lima TRA, Carvalho ECD, Martins FR, Oliveira RS, Miranda RS, Müller CS, Pereira L, Bittencourt PRL, Sobczak JCMSM, Gomes-Filho E, Costa RC, Araújo FS. Lignin composition is related to xylem embolism resistance and leaf life span in trees in a tropical semiarid climate. THE NEW PHYTOLOGIST 2018; 219:1252-1262. [PMID: 29767841 DOI: 10.1111/nph.15211] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Wood properties influence the leaf life span (LL) of tree crowns. As lignin is an important component of wood and the water transport system, we investigated its relationship with embolism resistance and the LL of several tree species in a seasonally dry tropical ecosystem. We determined total lignin and the monomer contents of guaiacyl (G) and syringyl (S) and related them to wood traits and xylem vulnerability to embolism (Ψ50 ) for the most common species of the Brazilian semiarid, locally known as Caatinga. Leaf life span was negatively related to Ψ50 and positively related to S : G, which was negatively related to Ψ50 . This means that greater S : G increases LL by reducing Ψ50 . Lignin content was not correlated with any variable. We found two apparently unrelated axes of drought resistance. One axis, associated with lignin monomeric composition, increases LL in the dry season as a result of lower xylem embolism vulnerability. The other, associated with wood density and stem water content, helps leafless trees to withstand drought and allows them to resprout at the end of the dry season. The monomeric composition of lignin (S : G) is therefore an important functional wood attribute affecting several key functional aspects of tropical tree species in a semiarid climate.
Collapse
Affiliation(s)
- Taysla R A Lima
- Ecology and Natural Resources Post-Graduate Program, Department of Biology, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Ellen C D Carvalho
- Department of Biology, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Fernando R Martins
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, PO Box 6109, 13083-970, Campinas, SP, Brazil
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, PO Box 6109, 13083-970, Campinas, SP, Brazil
| | - Rafael S Miranda
- Federal University of Piauí (UFPI/CPCE), Campus Professora Cinobelina Elvas, 64900-000, Bom Jesus, PI, Brazil
| | - Caroline S Müller
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, PO Box 6109, 13083-970, Campinas, SP, Brazil
| | - Luciano Pereira
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, PO Box 6109, 13083-970, Campinas, SP, Brazil
| | - Paulo R L Bittencourt
- Department of Plant Biology, Institute of Biology, University of Campinas - UNICAMP, PO Box 6109, 13083-970, Campinas, SP, Brazil
| | - Jullyana C M S M Sobczak
- Institute of Rural Development, University of International Integration of African-Brazilian Lusophony, 62790-000, Redenção, CE, Brazil
| | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60440-554, Fortaleza, CE, Brazil
| | - Rafael C Costa
- Department of Biology, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| | - Francisca S Araújo
- Department of Biology, Federal University of Ceará, 60440-900, Fortaleza, CE, Brazil
| |
Collapse
|