1
|
Al Shehab A, Bakry AS, Hill R, Alsulaimani FF, Abbassy MA. Evaluation of Bioactive Glass and Low Viscosity Resin as Orthodontic Enamel Sealer: An In Vitro Study. J Funct Biomater 2022; 13:jfb13040191. [PMID: 36278660 PMCID: PMC9624325 DOI: 10.3390/jfb13040191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
The study aimed to evaluate the effect of applying fluoride bioactive glass (FBAG) and Alpha-Glaze® (resin sealer) on the shear bond strength of orthodontic brackets to enamel bonded by Transbond XT, brushing−abrasion durability, and their protective effect against simulated cariogenic acidic attack. Materials include 135 extracted premolars that were divided into three groups—FBAG, Alpha-Glaze, and control. The shear bond strength test was measured using an Instron Universal Testing Machine. The brushing abrasion challenge took place with a tooth-brushing simulator. Transmitted light microscopy examinations were performed after the specimens were demineralized for 4 days. The results show that the shear bond strength values of the three groups did not report any statistically significant differences: FBAG (28.1 ± 5.5 Mpa), Alpha-Glaze (32.5 ± 7.4 Mpa), and control (30.7 ± 6.5 Mpa) p < 0.05. The Adhesive Remenant Index (ARI) study showed chipping of enamel in 6.6% of Alpha-Glaze and control specimens and 40% of specimens had their enamel surface covered with resin. Furthermore, 30% of the FBAG and 100% of the Alpha-Glaze sealer specimens resisted the abrasion test. In conclusion, FBAG can serve as an orthodontic-sealer capable of protecting the enamel surface surrounding orthodontic brackets. However, the Alpha-Glaze sealer did not offer the capability of protecting the enamel.
Collapse
Affiliation(s)
- Abdullah Al Shehab
- Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Samir Bakry
- Restorative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria 21568, Egypt
| | - Robert Hill
- Dental Physical Sciences Unit, Institute of Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Fahad Faiz Alsulaimani
- Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mona Aly Abbassy
- Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Dental Department, Alexandria University Hospital, Alexandria University, Alexandria 21532, Egypt
- Correspondence:
| |
Collapse
|
2
|
Demito CF, Costa JVD, Fracasso MDLC, Ramos AL. Efficacy of fluoride associated with nano-hydroxyapatite in reducing enamel demineralization adjacent to orthodontic brackets: in situ study. Dental Press J Orthod 2020; 24:48-55. [PMID: 31994646 PMCID: PMC6986190 DOI: 10.1590/2177-6709.24.6.048-055.oar] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 12/28/2018] [Indexed: 11/28/2022] Open
Abstract
Objective: To assess in situ the effect of fluoride associated with nano-hydroxyapatite for the prevention of demineralization of the enamel adjacent to orthodontic brackets. Material and Methods: Eight volunteers wore palatal devices prepared with 6 bovine enamel blocks (5x5x2 mm) with bonded brackets. The volunteers used the devices in two different moments of 14 days each. During the first 14 days, a product containing fluoride + nano-hydroxyapatite was applied twice (experimental group, GNH, n = 48), and for the other 14 days no prevention product was applied (control group, CG, n = 48). In both groups, along the experiment, the blocks were dripped with 20% sucrose eight times daily. After the experiment, all the specimens were sectioned and examined for lesion depth analysis (µm) under polarized light microscopy, and for enamel longitudinal microhardness (measured under the bracket, at 30 µm and at 130 µm from the margin), at seven different depths (10, 20, 30, 50, 70, 90, and 110 µm). Results: Under polarized light, group GNH presented significantly less demineralization depth (X¯= 15.01 µm, SD = 33.65) in relation to CG (X¯= 76.43 µm, SD = 83.75). Enamel longitudinal microhardness demonstrated significantly higher microhardness for group GNH when compared to CG. Conclusion: Fluoride + nano-hydroxyapatite can be an alternative preventive procedure for demineralization of the enamel adjacent to orthodontic brackets.
Collapse
Affiliation(s)
| | - Julyano Vieira da Costa
- Universidade Estadual de Maringá (Maringá/PR, Brazil).,Universidade Estadual de Maringá, Departamento de Odontologia Integrada (Maringá/PR, Brazil)
| | - Marina de Lourdes Calvo Fracasso
- Universidade de São Paulo, Departamento de Odontopediatria (Bauru/SP, Brazil).,Universidade Estadual de Maringá, Departamento de Odontologia (Maringá/PR, Brazil)
| | - Adilson Luiz Ramos
- Universidade Estadual de Maringá, Departamento de Odontologia (Maringá/PR, Brazil)
| |
Collapse
|
3
|
3-Dimensional characterization of cortical bone microdamage following placement of orthodontic microimplants using Optical Coherence Tomography. Sci Rep 2019; 9:3242. [PMID: 30824805 PMCID: PMC6397251 DOI: 10.1038/s41598-019-39670-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/30/2019] [Indexed: 11/08/2022] Open
Abstract
Microimplants are being used extensively in clinical practice to achieve absolute anchorage. Success of microimplant mainly depend on its primary stability onto the cortical bone surface and the associated Microdamage of the cortical bone during insertion procedure leads to many a microimplants to fail and dislodge from the cortical bone leading to its failure. Even though, previous studies showed occurrence of microdamage in the cortical bone, they were mainly 2-dimension studies or studies that were invasive to the host. In the present study, we used a non-invasive, non-ionizing imaging technique- Optical Coherence Tomography (OCT), to image and analyze the presence of microdamage along the cortical bone surrounding the microimplant. We inserted 80 microimplants in two different methods (drill and drill free method) and in two different angulations onto the cortical bone surface. Images were obtained in both 2D and 3D imaging modes. In the images, microdamage in form of microcracks on the cortical bone surface around the bone-microimplant interface and micro-elevations of the cortical bone in angulated microimplant insertions and the presence of bone debris due to screwing motion of the microimplant on insertion can be appreciated visually and quantitatively through the depth intensity profile analysis of the images.
Collapse
|
4
|
Lakshmikantha HT, Ravichandran NK, Jeon M, Kim J, Park HS. Assessment of cortical bone microdamage following insertion of microimplants using optical coherence tomography: a preliminary study. J Zhejiang Univ Sci B 2018; 19:818-828. [PMID: 30387332 DOI: 10.1631/jzus.b1700612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The study was done to evaluate the efficacy of optical coherence tomography (OCT), to detect and analyze the microdamage occurring around the microimplant immediately following its placement, and to compare the findings with micro-computed tomography (μCT) images of the samples to validate the result of the present study. METHODS Microimplants were inserted into bovine bone samples. Images of the samples were obtained using OCT and μCT. Visual comparisons of the images were made to evaluate whether anatomical details and microdamage induced by microimplant insertion were accurately revealed by OCT. RESULTS The surface of the cortical bone with its anatomical variations is visualized on the OCT images. Microdamage occurring on the surface of the cortical bone around the microimplant can be appreciated in OCT images. The resulting OCT images were compared with the μCT images. A high correlation regarding the visualization of individual microcracks was observed. The depth penetration of OCT is limited when compared to μCT. CONCLUSIONS OCT in the present study was able to generate high-resolution images of the microdamage occurring around the microimplant. Image quality at the surface of the cortical bone is above par when compared with μCT imaging, because of the inherent high contrast and high-resolution quality of OCT systems. Improvements in the imaging depth and development of intraoral sensors are vital for developing a real-time imaging system and integrating the system into orthodontic practice.
Collapse
Affiliation(s)
| | - Naresh Kumar Ravichandran
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Mansik Jeon
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Jeehyun Kim
- School of Electronics Engineering, College of IT Engineering, Kyungpook National University, Daegu 41566, Korea
| | - Hyo-Sang Park
- Department of Orthodontics, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| |
Collapse
|
5
|
Machoy M, Seeliger J, Szyszka-Sommerfeld L, Koprowski R, Gedrange T, Woźniak K. The Use of Optical Coherence Tomography in Dental Diagnostics: A State-of-the-Art Review. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:7560645. [PMID: 29065642 PMCID: PMC5534297 DOI: 10.1155/2017/7560645] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/02/2017] [Accepted: 05/31/2017] [Indexed: 12/14/2022]
Abstract
Optical coherence tomography provides sections of tissues in a noncontact and noninvasive manner. The device measures the time delay and intensity of the light scattered or reflected from biological tissues, which results in tomographic imaging of their internal structure. This is achieved by scanning tissues at a resolution ranging from 1 to 15 μm. OCT enables real-time in situ imaging of tissues without the need for biopsy, histological procedures, or the use of X-rays, so it can be used in many fields of medicine. Its properties are not only particularly used in ophthalmology, in the diagnosis of all layers of the retina, but also increasingly in cardiology, gastroenterology, pulmonology, oncology, and dermatology. The basic properties of OCT, that is, noninvasiveness and low wattage of the used light, have also been appreciated in analytical technology by conservators, who use it to identify the quality and age of paintings, ceramics, or glass. Recently, the OCT technique of visualization is being tested in different fields of dentistry, which is depicted in the article.
Collapse
Affiliation(s)
- Monika Machoy
- Division of Orthodontics, Pomeranian Medical University in Szczecin, Ul. Powstańców Wlkp 72, 70-111 Szczecin, Poland
| | - Julia Seeliger
- Division of Orthodontics, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Liliana Szyszka-Sommerfeld
- Division of Orthodontics, Pomeranian Medical University in Szczecin, Ul. Powstańców Wlkp 72, 70-111 Szczecin, Poland
| | - Robert Koprowski
- Department of Biomedical Computer Systems, Faculty of Computer Science and Materials Science, Institute of Computer Science, University of Silesia, Ul. Będzińska 39, 41-200 Sosnowiec, Poland
| | - Tomasz Gedrange
- Division of Orthodontics, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Krzysztof Woźniak
- Division of Orthodontics, Pomeranian Medical University in Szczecin, Ul. Powstańców Wlkp 72, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Khoroushi M, Kachuie M. Prevention and Treatment of White Spot Lesions in Orthodontic Patients. Contemp Clin Dent 2017; 8:11-19. [PMID: 28566845 PMCID: PMC5426141 DOI: 10.4103/ccd.ccd_216_17] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Decalcification of enamel, appearing as white spot lesions (WSLs), around fixed orthodontic appliances is a major challenge during and after fixed orthodontic treatment by considering the fact that the goal of orthodontic treatment is to enhance facial and dental esthetic appearance. Banded or bonded teeth exhibit a significantly higher rate of WSLs compared to the controls with no braces as fixed appliances and the bonding materials promote retention of biofilms. These lesions are managed in the first step by establishing good oral hygiene habits and prophylaxis with topical fluorides, including high-fluoride toothpastes, fluoride mouthwashes, gels, varnishes, fluoride-containing bonding materials, and elastic ligatures. Recently, other materials and methods have been recommended, including the application of casein phosphopeptides-amorphous calcium phosphate, antiseptics, probiotics, polyols, sealants, laser, tooth bleaching agents, resin infiltration, and microabrasion. This article reviews the currently used methods to manage enamel demineralization during and after orthodontic treatment and the risk factors and preventive measures based on the latest evidence.
Collapse
Affiliation(s)
- Maryam Khoroushi
- Dental Materials Research Center, Department of Operative Dentistry, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzie Kachuie
- Dental Materials Research Center, Department of Orthodontics, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|