1
|
Gavril Rațu RN, Stoica F, Lipșa FD, Constantin OE, Stănciuc N, Aprodu I, Râpeanu G. Pumpkin and Pumpkin By-Products: A Comprehensive Overview of Phytochemicals, Extraction, Health Benefits, and Food Applications. Foods 2024; 13:2694. [PMID: 39272458 PMCID: PMC11395535 DOI: 10.3390/foods13172694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
A versatile and popular Cucurbitaceous vegetable, pumpkin has recently gained much attention because of its variety of phytochemicals and health advantages. Pumpkins are a type of winter squash, traditionally with large, spherical, orange fruits and a highly nutrient food. Pumpkin by-products comprise various parts, such as seeds, peels, and pulp residues, with their bioactive composition and many potential benefits poorly explored by the food industry. Pumpkin and their by-products contain a wide range of phytochemicals, including carotenoids, polyphenols, tocopherols, vitamins, minerals, and dietary fibers. These compounds in pumpkin by-products exhibit antioxidant, anticancer, anti-inflammatory, anti-diabetic, and antimicrobial properties and could reduce the risk of chronic diseases. This comprehensive review aims to provide a detailed overview of the phytochemicals found in pumpkin and its by-products, along with their extraction methods, health benefits, and diverse food and industrial applications. This information can offer valuable insights for food scientists seeking to reevaluate pumpkin's potential as a functional ingredient. Reusing these by-products would support integrating a circular economy approach by boosting the market presence of valuable and sustainable products that improve health while lowering food waste.
Collapse
Affiliation(s)
- Roxana Nicoleta Gavril Rațu
- Department of Food Technologies, Faculty of Agriculture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Florina Stoica
- Department of Pedotechnics, Faculty of Agriculture, Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Florin Daniel Lipșa
- Department of Food Technologies, Faculty of Agriculture, "Ion Ionescu de la Brad" Iasi University of Life Sciences, 3 Mihail Sadoveanu Alley, 700489 Iasi, Romania
| | - Oana Emilia Constantin
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Nicoleta Stănciuc
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Iuliana Aprodu
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| | - Gabriela Râpeanu
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, Faculty of Food Science and Engineering, Dunărea de Jos University of Galati, 800201 Galați, Romania
| |
Collapse
|
2
|
Hu Z, Hu C, Li Y, Jiang Q, Li Q, Fang C. Pumpkin seed oil: a comprehensive review of extraction methods, nutritional constituents, and health benefits. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:572-582. [PMID: 37650308 DOI: 10.1002/jsfa.12952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/01/2023]
Abstract
Pumpkin seed oil (PSO), a rich source of nutrients, is extracted from the seeds of different pumpkin varieties for food and medicines. This article aims to provide an evidence-based review of the literature and to explore the extraction technologies, nutritional properties, and biological activity of PSO. From previous literature, PSO contains a large proportion of unsaturated fatty acids, with linoleic acid as the main component, and an amount of tocopherol, phytosterol, and phenolic acids. Some differences in the yield, composition, and physicochemical properties of PSO can be associated with the pumpkin's cultivars and the extraction methods. Some novel technologies involved in supercritical fluid extraction, enzyme-assisted aqueous extraction, and ultrasound-assisted extraction have been replacing the conventional technologies gradually as promising methods for the safe, non-polluting, and effective recovery of PSO. This healthy vegetable oil was reported by several in vitro and in vivo studies to have potential protective roles in oxidative stress, inflammation, cancer, and cardiovascular diseases. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zicong Hu
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Chaofan Hu
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Yanpo Li
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Qiaojun Jiang
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Qunhe Li
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- College of Agriculture and Biotechnology, Wenzhou Vocational College of Science & Technology, Wenzhou, China
- Institute of Food Science, Wenzhou Academy of Agricultural Science, Wenzhou, China
- Wenzhou Specialty Food Resources Engineering Technology Research Center, Wenzhou, China
| | - Cuilan Fang
- Centre for Disease Control and Prevention of Jiulongpo, Chongqing, China
| |
Collapse
|
3
|
Sánchez-Velázquez OA, Luna-Vital DA, Morales-Hernandez N, Contreras J, Villaseñor-Tapia EC, Fragoso-Medina JA, Mojica L. Nutritional, bioactive components and health properties of the milpa triad system seeds (corn, common bean and pumpkin). Front Nutr 2023; 10:1169675. [PMID: 37538927 PMCID: PMC10395131 DOI: 10.3389/fnut.2023.1169675] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/13/2023] [Indexed: 08/05/2023] Open
Abstract
The milpa system is a biocultural polyculture technique. Heritage of Mesoamerican civilizations that offers a wide variety of plants for food purposes. Corn, common beans, and pumpkins are the main crops in this agroecosystem, which are important for people's nutritional and food security. Moreover, milpa system seeds have great potential for preventing and ameliorating noncommunicable diseases, such as obesity, dyslipidemia, type 2 diabetes, among others. This work reviews and analyzes the nutritional and health benefits of milpa system seeds assessed by recent preclinical and clinical trials. Milpa seeds protein quality, vitamins and minerals, and phytochemical composition are also reviewed. Evidence suggests that regular consumption of milpa seeds combination could exert complementing effect to control nutritional deficiencies. Moreover, the combination of phytochemicals and nutritional components of the milpa seed could potentialize their individual health benefits. Milpa system seeds could be considered functional foods to fight nutritional deficiencies and prevent and control noncommunicable diseases.
Collapse
Affiliation(s)
- Oscar Abel Sánchez-Velázquez
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | | | - Norma Morales-Hernandez
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Jonhatan Contreras
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | - Elda Cristina Villaseñor-Tapia
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| | | | - Luis Mojica
- Tecnología Alimentaria, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Zapopan, Mexico
| |
Collapse
|
4
|
Šamec D, Loizzo MR, Gortzi O, Çankaya İT, Tundis R, Suntar İ, Shirooie S, Zengin G, Devkota HP, Reboredo-Rodríguez P, Hassan STS, Manayi A, Kashani HRK, Nabavi SM. The potential of pumpkin seed oil as a functional food-A comprehensive review of chemical composition, health benefits, and safety. Compr Rev Food Sci Food Saf 2022; 21:4422-4446. [PMID: 35904246 DOI: 10.1111/1541-4337.13013] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023]
Abstract
The growing interest in foods that can be beneficial to human health is bringing into focus some products that have been used locally for centuries but have recently gained worldwide attention. One of these foods is pumpkin seed oil, which has been used in culinary and traditional medicine, but recent data also show its use in the pharmaceutical and cosmetic industries. In addition, some sources refer to it as a potential functional food, mainly because it is obtained from pumpkin seeds, which contain many functional components. However, the production process of the oil may affect the content of these components and consequently the biological activity of the oil. In this review, we have focused on summarizing scientific data that explore the potential of pumpkin seed oil as a functional food ingredient. We provide a comprehensive overview of pumpkin seed oil chemical composition, phytochemical content, biological activity, and safety, as well as the overview of production processes and contemporary use. The main phytochemicals in pumpkin seed oil with health-related properties are polyphenols, phytoestrogens, and fatty acids, but carotenoids, squalene, tocopherols, and minerals may also contribute to health benefits. Most studies have been conducted in vitro and support the claim that pumpkin seed oil has antioxidant and antimicrobial activities. Clinical studies have shown that pumpkin seed oil may be beneficial in the treatment of cardiovascular problems of menopausal women and ailments associated with imbalance of sex hormones.
Collapse
Affiliation(s)
- Dunja Šamec
- Department of Food Technology, University Center Koprivnica, University North, Koprivnica, Croatia
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - Olga Gortzi
- School of Agricultural Sciences, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - İrem Tatlı Çankaya
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, CS, Italy
| | - İpek Suntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | | | - Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Azadeh Manayi
- Medicinal Plants Research Centre, Faculty of Pharmacy, University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
In Vitro Role of Pumpkin Parts as Pharma-Foods: Antihyperglycemic and Antihyperlipidemic Activities of Pumpkin Peel, Flesh, and Seed Powders, in Alloxan-Induced Diabetic Rats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:4804408. [PMID: 35959224 PMCID: PMC9363229 DOI: 10.1155/2022/4804408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/20/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022]
Abstract
Pumpkin is a well-known vegetable, among the members of Cucurbitaceae family, due to its importance as pharma food. Keeping in view the antidiabetic and plasma lipids lowering potential of pumpkin, the present study was conducted to investigate that, which part of pumpkin (peel, flesh, and seeds), possess more bioactive compounds, exhibiting antihyperglycemic and antihyperlipidemic potential. Albino rats with 190-210 g body weight were divided into 11 groups. Five rats were included in each group; group A was negative control, group B was positive control, and groups C to K were diabetic rats fed with pumpkin peel, flesh, and seed powders. Diabetes was induced in rats with the help of alloxan monohydrate. During 28 days of experimental period, blood glucose level of different rat's groups was checked with the help of glucometer, at every 7 days interval and at the end of 28 days study, plasma lipids were checked with the help of commercial kits. A significant decrease in blood glucose level (128.33 ± 1.67 mg/dl), TC (88.43 ± 0.66 mg/dl), TG (69.79 ± 0.49 mg/dl), and LDL-C (21.45 ± 0.08 mg/dl) was recorded in rat groups fed with 15 g pumpkin seed powder, at the end of study. After pumpkin seeds, second significant antihyperglycemic and antihyperlipidemic effect was recorded in rat's groups fed with 15 g pumpkin peel powder. Pumpkin flesh powder effect in lowering blood glucose level and plasma lipids was less significant as compared to seeds and peel powder. As the dose of the pumpkin powders was increased from 5 to 10 and then 15 g, the blood glucose-lowering and plasma lipid-lowering effect became more significant. Similarly, as the experimental duration was expanded from first week to 28 days, this antihyperglycemic and antihyperlipidemic effect became more significant. These results were sufficient to conclude that pumpkin has high potential to be used in human diet to cope with noncommunicable diseases like diabetes and hypercholesterolemia.
Collapse
|
6
|
Teeranachaideekul V, Parichatikanond W, Junyaprasert VB, Morakul B. Pumpkin Seed Oil-Loaded Niosomes for Topical Application: 5α-Reductase Inhibitory, Anti-Inflammatory, and In Vivo Anti-Hair Loss Effects. Pharmaceuticals (Basel) 2022; 15:ph15080930. [PMID: 36015077 PMCID: PMC9412580 DOI: 10.3390/ph15080930] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023] Open
Abstract
Pumpkin seed oil (PSO)-loaded niosomes were prepared from Tween 20 and cholesterol by ethanol injection. Confocal microscopy showed better skin permeation and hair follicle accumulation of the niosomes compared to the PSO solution. The PSO-loaded niosomes inhibited 5α-reductase activity in DU-145 cells and hindered IL-6 activity in RAW 264.7 cells. These effects indicated the great potential of PSO-loaded niosomes to reduce hair loss. The hair scalp serum with PSO-loaded niosomes did not show irritation to reconstructed human skin. This formulation presented a significant decrease in the percentage of fallen hairs by 44.42% in the in vivo 60-second hair count experiment and a significant increase in the anagen to telogen (A/T) ratio (1.4-fold) in the TrichoScan® evaluation after 8 weeks of treatment compared to the initial conditions, indicating the promising efficacy of PSO-loaded niosomes as a natural alternative for anti-hair loss therapy.
Collapse
Affiliation(s)
- Veerawat Teeranachaideekul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (V.T.); (V.B.J.)
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand;
- Center of Biopharmaceutical Science of Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Boontida Morakul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand; (V.T.); (V.B.J.)
- Correspondence:
| |
Collapse
|
7
|
ZHANG D, WU S. Effects of Foxc1 and Oct4 genes regulating BMSCs transplantation on cardiomyocyte apoptosis after acute myocardial infarction in rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.55321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|