1
|
Malvis Romero A, Picado Morales JJ, Klose L, Liese A. Enzyme-Assisted Extraction of Ulvan from the Green Macroalgae Ulva fenestrata. Molecules 2023; 28:6781. [PMID: 37836624 PMCID: PMC10574404 DOI: 10.3390/molecules28196781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Ulvan is a sulfated polysaccharide extracted from green macroalgae with unique structural and compositional properties. Due to its biocompatibility, biodegradability, and film-forming properties, as well as high stability, ulvan has shown promising potential as an ingredient of biopolymer films such as sustainable and readily biodegradable biomaterials that could replace petroleum-based plastics in diverse applications such as packaging. This work investigates the potential of Ulva fenestrata as a source of ulvan. Enzyme-assisted extraction with commercial cellulases (Viscozyme L and Cellulysin) and proteases (Neutrase 0.8L and Flavourzyme) was used for cell wall disruption, and the effect of the extraction time (3, 6, 17, and 20 h) on the ulvan yield and its main characteristics (molecular weight, functional groups, purity, and antioxidant capacity) were investigated. Furthermore, a combined process based on enzymatic and ultrasound extraction was performed. Results showed that higher extraction times led to higher ulvan yields, reaching a maximum of 14.1% dw with Cellulysin after 20 h. The combination of enzymatic and ultrasound-assisted extraction resulted in the highest ulvan extraction (17.9% dw). The relatively high protein content in U. fenestrata (19.8% dw) makes the residual biomass, after ulvan extraction, a potential protein source in food and feed applications.
Collapse
Affiliation(s)
- Ana Malvis Romero
- Institute of Technical Biocatalysis, Hamburg University of Technology, Denickestraße 15, 21073 Hamburg, Germany
| | | | | | | |
Collapse
|
2
|
Halavach TM, Kurchenko VP, Tarun EI, Dudchik NV, Yatskou MM, Lodygin AD, Alieva LR, Evdokimov IA, Ulrih NP. Influence of Complexation with β- and γ-Cyclodextrin on Bioactivity of Whey and Colostrum Peptides. Int J Mol Sci 2023; 24:13987. [PMID: 37762289 PMCID: PMC10530839 DOI: 10.3390/ijms241813987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Dairy protein hydrolysates possess a broad spectrum of bioactivity and hypoallergenic properties, as well as pronounced bitter taste. The bitterness is reduced by complexing the proteolysis products with cyclodextrins (CDs), and it is also important to study the bioactivity of the peptides in inclusion complexes. Hydrolysates of whey and colostrum proteins with extensive hydrolysis degree and their complexes with β/γ-CD were obtained in the present study, and comprehensive comparative analysis of the experimental samples was performed. The interaction of CD with peptides was confirmed via different methods. Bioactivity of the initial hydrolysates and their complexes were evaluated. Antioxidant activity (AOA) was determined by fluorescence reduction of fluorescein in the Fenton system. Antigenic properties were studied by competitive enzyme immunoassay. Antimutagenic effect was estimated in the Ames test. According to the experimental data, a 2.17/2.78-fold and 1.45/2.14-fold increase in the AOA was found in the β/γ-CD interaction with whey and colostrum hydrolysates, respectively. A 5.6/5.3-fold decrease in the antigenicity of whey peptides in complex with β/γ-CD was detected, while the antimutagenic effect in the host-guest systems was comparable to the initial hydrolysates. Thus, bioactive CD complexes with dairy peptides were obtained. Complexes are applicable as a component of specialized foods (sports, diet).
Collapse
Affiliation(s)
| | | | - Ekaterina I. Tarun
- Faculty of Environmental Medicine, International Sakharov Environmental Institute of Belarusian State University, 220070 Minsk, Belarus;
| | | | - Mikalai M. Yatskou
- Faculty of Radiophysics and Computer Technologies, Belarusian State University, 220030 Minsk, Belarus;
| | - Aleksey D. Lodygin
- Faculty of Food Engineering and Biotechnologies, North Caucasus Federal University, Stavropol 355017, Russia; (A.D.L.); (L.R.A.); (I.A.E.)
| | - Ludmila R. Alieva
- Faculty of Food Engineering and Biotechnologies, North Caucasus Federal University, Stavropol 355017, Russia; (A.D.L.); (L.R.A.); (I.A.E.)
| | - Ivan A. Evdokimov
- Faculty of Food Engineering and Biotechnologies, North Caucasus Federal University, Stavropol 355017, Russia; (A.D.L.); (L.R.A.); (I.A.E.)
| | | |
Collapse
|
3
|
Mansinhbhai CH, Sakure A, Liu Z, Maurya R, Das S, Basaiawmoit B, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Mishra BK, Hati S. Anti-Inflammatory, ACE Inhibitory, Antioxidative Activities and Release of Novel Antihypertensive and Antioxidative Peptides from Whey Protein Hydrolysate with Molecular Interactions. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:371-385. [PMID: 35584265 DOI: 10.1080/07315724.2022.2052201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The aim of the study was to evaluate the whey protein hydrolysate with bio-functional attributes viz. antioxidative, anti-inflammatory and ACE inhibition efficacy and release of bioactive peptides with antioxidative and ACE-inhibitory activity by employing Pepsin. METHOD The antioxidant, Anti-inflammatory, ACE inhibitory and proteolytic activities of the whey protein hydrolysates were studied followed by SDS-PAGE analysis and IEF. Anti-inflammatory activity of whey protein hydrolysate was also studied on RAW 264.7 cell line. The separation of the bioactive peptides from whey protein hydrolysate was achieved by RP-HPLC. The purified bioactive peptides were identified and characterized using RPLC/MS. RESULTS WPC (Whey protein concentrate) hydrolysate with pepsin showed proteolytic activity ranging between 14.46 and 18.87 mg/ml. Using the ABTS assay, the highest antioxidative activity was observed in 10 kDa retentate (84.50%) and 3 kDa retentate (85.96%), followed by the highest proteolytic activity (13.83 mg/ml) and ACE inhibitory activity (58.37%) in a 5% WPC solution at 65 °C after 8 h of pepsin hydrolysis. When the protein hydrolysate concentration was low, the production of proinflammatory cytokines by lipopolysaccharide-treated murine macrophages (RAW 264.7) was reduced. SDS-PAGE results exhibited very little protein bands when comparing with WPC hydrolysates to insoluble WPC. There were no protein spots on 2 D gel electrophoresis and "in-solution trypsin digestion" technique have been utilized to digest protein samples directly from WPC hydrolysates. Novel antioxidative peptides and ACE inhibitory peptides were also observed by comparing two databases, i.e., BIOPEP and AHTPDB respectively. The peptide sequences used in this study were found to have excellent potential to be used as inhibitors of hACE as all of them were able to show substantial interactions against the enzyme's active site. CONCLUSIONS The antihypertensive and antioxidative peptides from whey protein hydrolysates may be beneficial for the future development of physiologically active functional foods. Further, in vivo investigations are required to establish the health claim for each individual bioactive peptide from whey protein hydrolysate. Supplemental data for this article is available online at.
Collapse
Affiliation(s)
| | - Amar Sakure
- Department of Agriculture Biotechnology, Anand Agricultural University, Anand, Gujarat, India
| | - Zhenbin Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Ruchika Maurya
- Regional Center for Biotechnology, Faridabad, Haryana, India
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Sujit Das
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Bethsheba Basaiawmoit
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute, Knowledge City, Punjab, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development, Regional Centre, Tadong, Sikkim, India
| | - Birendra K Mishra
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura, Meghalaya, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat, India
| |
Collapse
|
4
|
Milessi TS, Lopes LA, Novelli PK, Tardioli PW, Giordano RLC. Improvement of functional properties of cow's milk peptides through partial proteins hydrolysis. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4520-4529. [PMID: 36193486 PMCID: PMC9525475 DOI: 10.1007/s13197-022-05533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 06/16/2023]
Abstract
Allergy by cow's milk proteins is among the major food allergies and could be reduced by the partial hydrolysis of these proteins by proteases, without significantly affecting its physicochemical properties. In addition, the peptides generated through enzymatic hydrolysis of the cow's milk can present prebiotic and bioactive properties. In this work, the cow's milk proteins were submitted to a controlled hydrolysis by Novo-Pro D® and the influence of the degree of hydrolysis (DH) on peptide size distribution was evaluated, as well as the prebiotic and antimicrobial properties of milk hydrolysates. It was shown that for DH-10%, all the peptides have sizes lower than 12 kDa which is the size of the most allergenic proteins, without apparent changes in the milk, as long as heating of the hydrolysate is avoided. The protein hydrolysis promoted a great improvement in the milk functional properties. In addition, the obtained milk peptides presented great prebiotic activities, as indicated by the significant improvement of the growth of prebiotic L. acidophilus and L. reuteri and by the production of bacteriocins indicated by the inhibition halos in the growth of a pathogenic microorganism. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05533-x.
Collapse
Affiliation(s)
- Thais S. Milessi
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, Itajubá, MG 1303, 37500-903 Brazil
| | - Laiane A. Lopes
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPEQ-UFSCar), Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
| | - Paula K. Novelli
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
| | - Paulo W. Tardioli
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPEQ-UFSCar), Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
| | - Raquel L. C. Giordano
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
- Graduate Program of Chemical Engineering, Federal University of São Carlos (PPEQ-UFSCar), Rodovia Washington Luíz, km 235, São Carlos, SP 13565-905 Brazil
| |
Collapse
|
5
|
Asaithambi N, Singha P, Singh SK. Recent application of protein hydrolysates in food texture modification. Crit Rev Food Sci Nutr 2022; 63:10412-10443. [PMID: 35653113 DOI: 10.1080/10408398.2022.2081665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The demand for clean labels has increased the importance of natural texture modifying ingredients. Proteins are unique compounds that can impart unique textural and structural changes in food. However, lack of solubility and extensive aggregability of proteins have increased the demand for enzymatically hydrolyzed proteins, to impart functional and structural modifications to food products. The review elaborates the recent application of various proteins, protein hydrolysates, and their role in texture modification. The impact of protein hydrolysates interaction with other food macromolecules, the effect of pretreatments, and dependence of various protein functionalities on textural and structural modification of food products with controlled enzymatic hydrolysis are explained in detail. Many researchers have acknowledged the positive effect of enzymatically hydrolyzed proteins on texture modification over natural protein. With enzymatic hydrolysis, various textural properties including foaming, gelling, emulsifying, water holding capacity have been effectively improved. It is evident that each protein is unique and imparts exceptional structural changes to different food products. Thus, selection of protein requires a fundamental understanding of its structure-substrate property relation. For wider applicability in the industrial sector, more studies on interactions at the molecular level, dosage, functionality changes, and sensorial attributes of protein hydrolysates in food systems are required.
Collapse
Affiliation(s)
- Niveditha Asaithambi
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Poonam Singha
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| | - Sushil Kumar Singh
- Department of Food Process Engineering, National Institute of Technology (NIT) Rourkela, Rourkela, India
| |
Collapse
|
6
|
Landim AP, Matsubara NK, da Silva-Santos JE, Mellinger-Silva C, Rosenthal A. Application of preliminary high-pressure processing for improving bioactive characteristics and reducing antigenicity of whey protein hydrolysates. FOOD SCI TECHNOL INT 2021; 28:489-501. [PMID: 34134565 DOI: 10.1177/10820132211022106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the use of Novo Pro-D® (NPD) and Ficin (FC) as alternative proteases for the production of bioactive peptides with reduced allergenicity from whey protein concentrate (WPC). In addition, the use of high hydrostatic pressure processing as pre-treatment of WPC and its impact on the final characteristics of hydrolysates were also evaluated. NPD treatments generated hydrolysates with a 98% reduction of soluble proteins, greater in vitro antioxidant capacity, and less immunoreactivity when compared to FC ones. However, pre-treatment was an essential tool to improve WPC hydrolysis when FC was used, resulting in hydrolysates with less soluble proteins, enhanced antioxidant capacity, and less allergenicity compared with conventional hydrolysis. As for NPD, the pre-treatment of WPC improved the in vitro antioxidant capacity and resulted in a 100% reduction in immunoreactivity to β-lactoglobulin in a shorter processing time. Importantly, bioactive peptides generated by FC displayed an improved ability to induce in vitro arterial relaxation, compared with those obtained from NPD process. Therefore, this study provides innovative evidence regarding how the proteases used for production of whey hydrolysates can improve its biological effects, and discloses the use of high hydrostatic pressure combined with enzymatic hydrolysis as a promising alternative to produce hydrolysates with improved properties.
Collapse
Affiliation(s)
- Ana Pm Landim
- Departamento de Tecnologia de Alimentos, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Rio de Janeiro, Brazil
| | - Natália K Matsubara
- Laboratório de Biologia Cardiovascular, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - José E da Silva-Santos
- Laboratório de Biologia Cardiovascular, Departamento de Farmacologia, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | | | | |
Collapse
|
7
|
Eberhardt A, López EC, Marino F, Mammarella EJ, Manzo RM, Sihufe GA. Whey protein hydrolysis with microbial proteases: Determination of kinetic parameters and bioactive properties for different reaction conditions. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Agustina Eberhardt
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa FeS3000GLNArgentina
| | - Emilse C López
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa FeS3000GLNArgentina
| | - Fernanda Marino
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa FeS3000GLNArgentina
| | - Enrique J Mammarella
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa FeS3000GLNArgentina
| | - Ricardo M Manzo
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa FeS3000GLNArgentina
| | - Guillermo A Sihufe
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC) ‐ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Universidad Nacional del Litoral (UNL) Güemes 3450 Santa FeS3000GLNArgentina
| |
Collapse
|
8
|
Jang JH, Kim S, Lee HJ, Suh HJ, Jo K. Stimulating effect of whey protein hydrolysate on bone growth in MC3T3-E1 cells and a rat model. Food Funct 2021; 12:5109-5117. [PMID: 33969848 DOI: 10.1039/d1fo00546d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study was conducted to investigate the effect of whey protein hydrolysate (WPH) on osteogenic cell differentiation and its growth-promoting effects in rats. Alkaline phosphatase (ALP) activity and calcium deposition were measured by treating MC3T3-E1 cells with WPH, and mRNA and protein levels of factors related to osteoblast differentiation were assessed. ALP activity and calcium deposition were significantly increased in the WPH group (p < 0.001). These findings were confirmed by the upregulation of ALP, bone morphogenic protein, bone sialoprotein, and collagen at the mRNA and protein levels. Furthermore, to confirm the growth-promoting effect of WPH, bone growth was analyzed by administering 3-week-old Sprague-Dawley rats with whey protein or WPH. Moreover, serum levels of calcium, ALP, and insulin-like growth factor-1 (IGF-1) were analyzed, bone analysis was performed using micro-CT, and the size of the growth plate was measured by Cresyl violet staining. When rats were administered with a high dose of WPH (600 mg per kg per day), calcium levels decreased significantly, while ALP levels (1.14-fold; p < 0.01), IGF-1 levels, tibia length, and growth plate height increased significantly compared to those in the control group. Collectively, WPH has shown to be effective in bone differentiation and bone growth.
Collapse
Affiliation(s)
- Joo Hyun Jang
- R&D Center, Chong Kun Dang Healthcare Corporation, Seoul 07249, Republic of Korea
| | - Singeun Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Hyun Jung Lee
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow 83844, USA
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| | - Kyungae Jo
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Assessment of the Bioactive Potential of Cheese Whey Protein Hydrolysates Using Immobilized Alcalase. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02552-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Optimization of the Emulsifying Properties of Food Protein Hydrolysates for the Production of Fish Oil-in-Water Emulsions. Foods 2020; 9:foods9050636. [PMID: 32429164 PMCID: PMC7278789 DOI: 10.3390/foods9050636] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/15/2023] Open
Abstract
The incorporation of lipid ingredients into food matrices presents a main drawback-their susceptibility to oxidation-which is associated with the loss of nutritional properties and the generation of undesirable flavors and odors. Oil-in-water emulsions are able to stabilize and protect lipid compounds from oxidation. Driven by consumers' demand, the search for natural emulsifiers, such as proteins, is gaining much interest in food industries. This paper evaluates the in vitro emulsifying properties of protein hydrolysates from animal (whey protein concentrate) and vegetal origin (a soy protein isolate). By means of statistical modelling and bi-objective optimization, the experimental variables, namely, the protein source, enzyme (i.e., subtilisin, trypsin), degree of hydrolysis (2-14%) and emulsion pH (2-8), were optimized to obtain their maximal in vitro emulsifying properties. This procedure concluded that the emulsion prepared from the soy protein hydrolysate (degree of hydrolysis (DH) 6.5%, trypsin) at pH 8 presented an optimal combination of emulsifying properties (i.e., the emulsifying activity index and emulsifying stability index). For validation purposes, a fish oil-in-water emulsion was prepared under optimal conditions, evaluating its physical and oxidative stability for ten days of storage. This study confirmed that the use of soy protein hydrolysate as an emulsifier stabilized the droplet size distribution and retarded lipid oxidation within the storage period, compared to the use of a non-hydrolyzed soy protein isolate.
Collapse
|
11
|
Glyoxyl-Activated Agarose as Support for Covalently Link Novo-Pro D: Biocatalysts Performance in the Hydrolysis of Casein. Catalysts 2020. [DOI: 10.3390/catal10050466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the performance of a commercial protease (Novo-Pro D (NPD)), both in soluble and immobilized forms, in the hydrolysis of proteins (using casein as model protein). Immobilization of the protease NPD on 6% agarose activated with glyoxyl groups for 24 h at 20 °C and pH 10.0 allowed preparing immobilized biocatalyst with around 90% immobilization yield, 92% recovered activity versus small substrate, and a thermal stability 5.3-fold higher than the dialyzed soluble enzyme at 50 °C and pH 8.0. Immobilization times longer than 24 h lead to a decrease in the recovered activity and did not improve the biocatalyst stability. At 50 °C and pH 6.5, the immobilized NPD was around 20-fold more stable than the dialyzed soluble protease. Versus casein, the immobilized NDP presented a 10% level of activity, but it allowed hydrolyzing casein (26 g/L) at 50 °C and pH 6.5 up to a 40% degree of hydrolysis (DH) after 2 h reaction, while under the same conditions, only a 34% DH was achieved with soluble NPD. In addition, the immobilized NPD showed good reusability, maintaining the DH of casein for at least ten 2h-reaction batches.
Collapse
|
12
|
Maluf JU, Fiorese ML, Maestre KL, Dos Passos FR, Finkler JK, Fleck JF, Borba CE. Optimization of the porcine liver enzymatic hydrolysis conditions. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- José U. Maluf
- Chemical Engineering Postgraduate Program, State University of West Paraná, UNIOESTE Toledo Paraná Brazil
| | - Mônica L. Fiorese
- Chemical Engineering Postgraduate Program, State University of West Paraná, UNIOESTE Toledo Paraná Brazil
| | - Keiti L. Maestre
- Chemical Engineering Postgraduate Program, State University of West Paraná, UNIOESTE Toledo Paraná Brazil
| | - Fernanda R. Dos Passos
- Chemical Engineering Postgraduate Program, State University of West Paraná, UNIOESTE Toledo Paraná Brazil
| | - Joana K. Finkler
- Fishing Resources and Fishing Engineering Postgraduate Program, State University of West Paraná, UNIOESTE Toledo Paraná Brazil
| | | | - Carlos E. Borba
- Chemical Engineering Postgraduate Program, State University of West Paraná, UNIOESTE Toledo Paraná Brazil
| |
Collapse
|