1
|
Romero-Márquez JM, Navarro-Hortal MD, Orantes FJ, Esteban-Muñoz A, Pérez-Oleaga CM, Battino M, Sánchez-González C, Rivas-García L, Giampieri F, Quiles JL, Forbes-Hernández TY. In Vivo Anti-Alzheimer and Antioxidant Properties of Avocado ( Persea americana Mill.) Honey from Southern Spain. Antioxidants (Basel) 2023; 12:antiox12020404. [PMID: 36829962 PMCID: PMC9952156 DOI: 10.3390/antiox12020404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
There is growing evidence that Alzheimer's disease (AD) can be prevented by reducing risk factors involved in its pathophysiology. Food-derived bioactive molecules can help in the prevention and reduction of the progression of AD. Honey, a good source of antioxidants and bioactive molecules, has been tied to many health benefits, including those from neurological origin. Monofloral avocado honey (AH) has recently been characterized but its biomedical properties are still unknown. The aim of this study is to further its characterization, focusing on the phenolic profile. Moreover, its antioxidant capacity was assayed both in vitro and in vivo. Finally, a deep analysis on the pathophysiological features of AD such as oxidative stress, amyloid-β aggregation, and protein-tau-induced neurotoxicity were evaluated by using the experimental model C. elegans. AH exerted a high antioxidant capacity in vitro and in vivo. No toxicity was found in C. elegans at the dosages used. AH prevented ROS accumulation under AAPH-induced oxidative stress. Additionally, AH exerted a great anti-amyloidogenic capacity, which is relevant from the point of view of AD prevention. AH exacerbated the locomotive impairment in a C. elegans model of tauopathy, although the real contribution of AH remains unclear. The mechanisms under the observed effects might be attributed to an upregulation of daf-16 as well as to a strong ROS scavenging activity. These results increase the interest to study the biomedical applications of AH; however, more research is needed to deepen the mechanisms under the observed effects.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | | | - Adelaida Esteban-Muñoz
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
| | - Cristina M. Pérez-Oleaga
- Department of Biostatistics, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
- Department of Biostatistics, Universidad Internacional Iberoamericana, Arecibo, PR 00613, USA
- Department of Biostatistics, Universidade Internacional do Cuanza, Cuito 250, Angola
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China
| | - Cristina Sánchez-González
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Lorenzo Rivas-García
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Sport and Health Research Centre, University of Granada, C/Menéndez Pelayo 32, 18016 Granada, Spain
| | - Francesca Giampieri
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, 39011 Santander, Spain
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| | - Tamara Y. Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Correspondence: (J.L.Q.); (T.Y.F.-H.); Tel.: +34-95-824-1000 (ext. 20316) (J.L.Q. & T.Y.F.-H.)
| |
Collapse
|
2
|
Abstract
Background: Polyphenols are a set of bioactive compounds commonly found in plants. These compounds are of great interest, as they have shown high antioxidant power and are correlated to many health benefits. Hence, traditional methods of extraction such as solvent extraction, Soxhlet extraction and novel extraction technologies such as ultrasound-assisted extraction and subcritical water extraction (SWE) have been investigated for the extraction of polyphenols. Scope and Approach: Generally, for traditional extractions, the total phenolic content (TPC) is highest at an extraction temperature of 60–80 °C. For this reason, polyphenols are regularly regarded as heat-labile compounds. However, in many studies that investigated the optimal temperature for subcritical water extraction (SWE), temperatures as high as 100–200 °C have been reported. These SWE extractions showed extremely high yields and antioxidant capacities at these temperatures. This paper aimed to examine the relevant literature to identify and understand the mechanisms behind this discrepancy. Results: Thermal degradation is the most common explanation for the degradation of polyphenols. This may be the case for specific or sub-groups of phenolic acids. The different extraction temperatures may have also impacted the types of polyphenols extracted. At high extraction temperatures, the formation of new compounds known as Maillard reaction products may also influence the extracted polyphenols. The selection of source material for extraction, i.e., the plant matrix, and the effect of extraction conditions, i.e., oxidation and light exposure, are also discussed. The overestimation of total phenolic content by the Folin–Ciocâlteu assay is also discussed. There is also a lack of consensus in TPC’s correlation to antioxidant activity.
Collapse
|
3
|
JUNSI M, SIRIPONGVUTIKORN S. Development of herbal juice from Centella asiatica: antioxidant property, nutritional value and shelf life of product. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.93722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
YOU F, MA C, XU F, SUN F, WAN W. The improvement value and treatment safety of neurological rehabilitation strengthening training on upper limb functions of patients with cerebrovascular diseases. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.51321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Fei YOU
- Huazhong University of Science and Technology, China
| | - Chaoyang MA
- Huazhong University of Science and Technology, China
| | - Fen XU
- Huazhong University of Science and Technology, China
| | - Fangfang SUN
- Huazhong University of Science and Technology, China
| | - Wenjun WAN
- Huazhong University of Science and Technology, China
| |
Collapse
|
5
|
DING X, TANG X, HOU Y. Comparative studies on the structure, biological activity and molecular mechanisms of polysaccharides from Boletus aereus (BA-T) and Pleurotus cornucopiae (PC-1). FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.50421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xiang DING
- China West Normal University, China; China West Normal University, China
| | | | - Yiling HOU
- China West Normal University, China; Sichuan Institute of Atomic Energy, China; Departmental and Municipal Co-construction of Crops Genetic Improvement of Hill Land Key Laboratory of Sichuan Province, China
| |
Collapse
|
6
|
Scepankova H, Pinto CA, Paula V, Estevinho LM, Saraiva JA. Conventional and emergent technologies for honey processing: A perspective on microbiological safety, bioactivity, and quality. Compr Rev Food Sci Food Saf 2021; 20:5393-5420. [PMID: 34626076 DOI: 10.1111/1541-4337.12848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/09/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022]
Abstract
Honey is a natural food of worldwide economic importance. Over the last decades, its potential for food, medical, cosmetical, and biotechnological applications has been widely explored. One of the major safety issues regarding such applications is its susceptibility to being contaminated with bacterial and fungi spores, including pathogenic ones, which may impose a hurdle to its consumption in a raw state. Another factor that makes this product particularly challenging relies on its high sugar content, which will lead to the formation of hydroxymethylfurfural (HMF) when heated (due to Maillard reactions). Moreover, honey's bioactivity is known to be affected when it goes through thermal processing due to its unstable and thermolabile components. Therefore, proper food processing methodologies are of utmost importance not only to ensure honey safety but also to provide a high-quality product with low content of HMF and preserved biological properties. As so, emerging food processing technologies have been employed to improve the safety and quality of raw honey, allowing, for example, to reduce/avoid the exposure time to high processing temperatures, with consequent impact on the formation of HMF. This review aims to gather the literature available regarding the use of conventional and emergent food processing technologies (both thermal and nonthermal food processing technologies) for honey decontamination, preservation/enhancement of honey biological activity, as well as the sensorial attributes.
Collapse
Affiliation(s)
- Hana Scepankova
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | - Carlos A Pinto
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| | - Vanessa Paula
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
| | - Letícia M Estevinho
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Effect of thermal liquefaction on quality, chemical composition and antibiofilm activity against multiresistant human pathogens of crystallized eucalyptus honey. Food Chem 2021; 365:130519. [PMID: 34247044 DOI: 10.1016/j.foodchem.2021.130519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/03/2021] [Accepted: 06/30/2021] [Indexed: 11/20/2022]
Abstract
Thermal liquefaction is a conventional method used by beekeepers to liquefy crystallized honey. However, an abusive use of heat may affect its quality, chemical composition and bioactivity. The purpose of this study was to investigate the effect of thermal liquefaction on the quality, chemical composition and antibiofilm properties of eucalyptus honey. Thermal liquefaction (at 45 and 60 °C) did not affect the honey's quality; however, a significant reduction in the reducing capacity, total phenolic content and hydrogen peroxide content was observed. At 60 °C, a significant reduction in the honey's ability to inhibit biofilm formation was observed in Pseudomonas aeruginosa, as well as a reduction in its ability to remove preformed biofilms in both Staphylococcus aureus and Pseudomonas aeruginosa. Structural changes in biofilm architecture caused by honey were not affected by thermal treatment. Therefore, we recommend liquefaction at 45 °C as the most convenient for honey liquefaction without affecting its characteristics.
Collapse
|
8
|
Heat Treatment Improves UV Photoprotective Effects of Licorice in Human Dermal Fibroblasts. Processes (Basel) 2021. [DOI: 10.3390/pr9061040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
External stimulation of the skin by ultraviolet B (UVB) radiation induces oxidative stress or inflammation, causing skin aging and skin cancer. Glycyrrhiza uralensis (licorice) has been used as a medicinal plant for its antioxidant, anti-inflammatory, antiviral, antimicrobial, anticarcinogenic, and hepatoprotective properties. The present study analyzed the effects of thermal processing on the bioactivities of licorice. Heat-treated licorice (HL) extracts had better antioxidant and anti-inflammatory activities than non-treated licorice (NL) extract. HL extracts also had higher total phenol contents than NL extract. In particular, contents of isoliquiritigenin, an antioxidant and anti-inflammatory substance of licorice, increased in proportion to the skin-protection effects of HL extracts. Heat treatment increased the contents of phenolic compounds such as isoliquiritigenin in licorice extract, which improved the UV photoprotective effect of licorice in human dermal fibroblasts.
Collapse
|