1
|
Hnini M, Aurag J. Genetic diversity, stress tolerance and phytobeneficial potential in rhizobacteria of Vachellia tortilis subsp. raddiana. ENVIRONMENTAL MICROBIOME 2024; 19:73. [PMID: 39334409 PMCID: PMC11438029 DOI: 10.1186/s40793-024-00611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Soil bacteria often form close associations with their host plants, particularly within the root compartment, playing a significant role in plant growth and stress resilience. Vachellia tortilis subsp. raddiana, (V. tortilis subsp. raddiana)a leguminous tree, naturally thrives in the harsh, arid climate of the Guelmim region in southern Morocco. This study aims to explore the diversity and potential plant growth-promoting (PGP) activities of bacteria associated with this tree. RESULTS A total of 152 bacterial isolates were obtained from the rhizosphere of V. tortilis subsp. raddiana. Rep-PCR fingerprinting revealed 25 distinct genomic groups, leading to the selection of 84 representative strains for further molecular identification via 16 S rRNA gene sequencing. Seventeen genera were identified, with Bacillus and Pseudomonas being predominant. Bacillus strains demonstrated significant tolerance to water stress (up to 30% PEG), while Pseudomonas strains showed high salinity tolerance (up to 14% NaCl). In vitro studies indicated variability in PGP activities among the strains, including mineral solubilization, biological nitrogen fixation, ACC deaminase activity, and production of auxin, siderophores, ammonia, lytic enzymes, and HCN. Three elite strains were selected for greenhouse inoculation trials with V. tortilis subsp. raddiana. Strain LMR725 notably enhanced various plant growth parameters compared to uninoculated control plants. CONCLUSIONS The findings underscore the potential of Bacillus and Pseudomonas strains as biofertilizers, with strain LMR725 showing particular promise in enhancing the growth of V. tortilis subsp. raddiana. This strain emerges as a strong candidate for biofertilizer formulation aimed at improving plant growth and resilience in arid environments.
Collapse
Affiliation(s)
- Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco.
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, 10000, Morocco
| |
Collapse
|
2
|
Minari GD, Piazza RD, Sass DC, Contiero J. EPS Production by Lacticaseibacillus casei Using Glycerol, Glucose, and Molasses as Carbon Sources. Microorganisms 2024; 12:1159. [PMID: 38930541 PMCID: PMC11205391 DOI: 10.3390/microorganisms12061159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
This study demonstrates that Lactobacillus can produce exopolysaccharides (EPSs) using alternative carbon sources, such as sugarcane molasses and glycerol. After screening 22 strains of Lactobacillus to determine which achieved the highest production of EPS based on dry weight at 37 °C, the strain Ke8 (L. casei) was selected for new experiments. The EPS obtained using glycerol and glucose as carbon sources was classified as a heteropolysaccharide composed of glucose and mannose, containing 1730 g.mol-1, consisting of 39.4% carbohydrates and 18% proteins. The EPS obtained using molasses as the carbon source was characterized as a heteropolysaccharide composed of glucose, galactose, and arabinose, containing 1182 g.mol-1, consisting of 52.9% carbohydrates and 11.69% proteins. This molecule was characterized using Size Exclusion Chromatography (HPLC), Gas chromatography-mass spectrometry (GC-MS), Fourier-transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance spectroscopy (1H-NMR). The existence of polysaccharides was confirmed via FT-IR and NMR analyses. The results obtained suggest that Lacticaseibacillus casei can grow in media that use alternative carbon sources such as glycerol and molasses. These agro-industry residues are inexpensive, and their use contributes to sustainability. The lack of studies regarding the use of Lacticaseibacillus casei for the production of EPS using renewable carbon sources from agroindustry should be noted.
Collapse
Affiliation(s)
- Guilherme Deomedesse Minari
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
| | - Rodolfo Debone Piazza
- Institute of Chemistry, São Paulo State University (Unesp), Araraquara 14800-903, Brazil;
| | - Daiane Cristina Sass
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
| | - Jonas Contiero
- Institute of Biosciences, São Paulo State University (Unesp), Rio Claro 13506-900, Brazil; (G.D.M.); (D.C.S.)
- Institute on Research in Bioenergy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| |
Collapse
|
3
|
Song SG, Oh C, Yoo S, Cho JY, Kim KS, Song C, Premkumar T. A general one-pot, solvent-free solid-state synthesis of biocompatible metal nanoparticles using dextran as a tool: Evaluation of their catalytic and anti-cancer activities. Int J Biol Macromol 2023; 253:127069. [PMID: 37751819 DOI: 10.1016/j.ijbiomac.2023.127069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
We propose a general green method coupled with a solid-state vibration ball milling strategy for the synthesis of various metal nanoparticles (MNPs), employing a polymeric carbohydrate dextran (Dx) as a reducing and stabilizing molecule. The synthesis of size-controlled Dx-based MNPs (Dx@MNPs), featuring comparatively narrow size distributions, was achieved by controlling the mass ratio of the reactants, reaction time, frequency of the vibration ball mill, and molecular weight of Dx. Notably, this process was conducted at ambient temperatures, without the aid of solvents and accelerating agents, such as NaOH, and conventional reductants as well as stabilizers. Thermal properties of the resulting Dx@MNPs nanocomposites were extensively investigated, highlighting the influence of metal precursors and reaction conditions. Furthermore, the catalytic activity of synthesized nanocomposites was evaluated through the reduction reaction of 4-nitrophenol, exhibiting great catalytic performance. In addition, we demonstrated the excellent biocompatibility of the as-prepared Dx@MNPs toward human embryonic kidney (HEK-293) cells, revealing their potential for anticancer activities. This novel green method for synthesizing biocompatible MNPs with Dx expands the horizons of carbohydrate-based materials as well as MNP nanocomposites for large-scale synthesis and controlled size distribution for various industrial and biomedical applications.
Collapse
Affiliation(s)
- Sun Gu Song
- Department of Chemistry, Sungkyunkwan University, Suwon, Gyeonggi 16419, South Korea
| | - Changsuk Oh
- Department of Chemistry, Sungkyunkwan University, Suwon, Gyeonggi 16419, South Korea
| | - Sulgi Yoo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi 16419, South Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Gyeonggi 16419, South Korea
| | - Kyung-Su Kim
- Convergence Research Center for Energy and Environmental Sciences, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si 16419, South Korea
| | - Changsik Song
- Department of Chemistry, Sungkyunkwan University, Suwon, Gyeonggi 16419, South Korea.
| | - Thathan Premkumar
- Department of Chemistry, Sungkyunkwan University, Suwon, Gyeonggi 16419, South Korea; The University College, Sungkyunkwan University, Suwon, Gyeonggi 16419, South Korea.
| |
Collapse
|
4
|
Sharma S, Saraf M. Enhanced exopolysaccharide production by multi metal tolerant Klebsiella variicolaSMHMZ46 isolated from mines area and application in metal bioremediation. Int Microbiol 2023; 26:1167-1183. [PMID: 37147491 DOI: 10.1007/s10123-023-00366-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023]
Abstract
The current study aimed to enhance exopolysaccharide production by Klebsiella variicolaSMHMZ46 isolated from the Zawar mines area in Udaipur, Rajasthan, India, by optimizing the medium with OFAT and a central composite design. The trial including sucrose (9.5%), casein hydrolysate (3%), and NaCl (0.5%) yielded the maximum EPS production as indicated by applying the CCD-RSM biostatistical program. The composition of exopolysaccharides produced by Klebsiella variicolaSMHMZ46 culture was characterized. Growth under Pb(II), Cd(II), and Ni(II) metal amended conditions induced EPS production relative to control. TLC was used for identifying the sugar residues of EPS, in addition to determination of both total carbohydrate and protein contents. According to FT-IR analysis, EPS can interact with metal ions via their functional chemical groups, thereby supporting their bioremediation potential. The metal removal efficiency of bacteria and their produced EPS in broth individually spiked with Pb(II), Ni(II), and Cd(II) was 99.18%, 97.60%, and 98.20%, respectively, and powdered EPS from contaminated water was 85.76%, 72.40%, and 71.53%, respectively. According to FEG-SEM observations, the surface morphology of EPS becomes rough, demonstrating sharp bumps after metal binding. A FEG-SEM analysis of the structure of EPS was performed; the surface structure of EPS (with metal) was more rigid than that of control EPS (without metal). The interaction between the EPS system and Pb(II) ions was investigated using FEG-SEM coupled with energy dispersive X-ray spectra, and a strong peak of C, O, and Pb elements was observed, indicating successful Pb adsorption. These findings suggest that EPS from Klebsiella variicolaSMHMZ46 has a good metal adsorbing nature and could be a promising biosorbent for metal bioremediation of contaminated water.
Collapse
Affiliation(s)
- Sarita Sharma
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
5
|
Sutthi N, Wangkahart E, Panase P, Karirat T, Deeseenthum S, Ma NL, Luang-In V. Dietary Administration Effects of Exopolysaccharide Produced by Bacillus tequilensis PS21 Using Riceberry Broken Rice, and Soybean Meal on Growth Performance, Immunity, and Resistance to Streptococcus agalactiae of Nile tilapia ( Oreochromis niloticus). Animals (Basel) 2023; 13:3262. [PMID: 37893987 PMCID: PMC10603753 DOI: 10.3390/ani13203262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Overuse of antibiotics in aquaculture has generated bacterial resistance and altered the ecology. Aquacultural disease control requires an environmentally sustainable approach. Bacterial exopolysaccharides (EPSs) as bioimmunostimulants have not been extensively explored in aquaculture. This study investigated EPS produced from 5% w/v riceberry broken rice as a carbon source and 1% w/v soybean meal as a nitrogen source by Bacillus tequilensis PS21 from milk kefir grain for its immunomodulatory, antioxidant activities and resistance to pathogenic Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). The FTIR spectrum of EPS confirmed the characteristic bonds of polysaccharides, while the HPLC chromatogram of EPS displayed only the glucose monomer subunit, indicating its homopolysaccharide feature. This EPS (20 mg/mL) exhibited DPPH scavenging activity of 65.50 ± 0.31%, an FRAP value of 2.07 ± 0.04 mg FeSO4/g DW, and antimicrobial activity (14.17 ± 0.76 mm inhibition zone diameter) against S. agalactiae EW1 using the agar disc diffusion method. Five groups of Nile tilapia were fed diets (T1 (Control) = 0.0, T2 = 0.1, T3 = 0.2, T4 = 1.0, and T5 = 2.0 g EPS/kg diet) for 90 days. Results showed that EPS did not affect growth performances or body composition, but EPS (T4 + T5) significantly stimulated neutrophil levels and serum lysozyme activity. EPS (T5) significantly induced myeloperoxidase activity, catalase activity, and liver superoxide dismutase activity. EPS (T5) also significantly increased the survival of fish at 80.00 ± 5.77% at 14 days post-challenge with S. agalactiae EW1 compared to the control (T1) at 53.33 ± 10.00%. This study presents an efficient method for utilizing agro-industrial biowaste as a prospective source of value-added EPS via a microbial factory to produce a bio-circular green economy model that preserves a healthy environment while also promoting sustainable aquaculture.
Collapse
Affiliation(s)
- Nantaporn Sutthi
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (N.S.); (E.W.)
- Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand
- Unit of Excellence Physiology and Sustainable Production of Terrestrial and Aquatic Animals (FF66-UoE014), School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
| | - Eakapol Wangkahart
- Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (N.S.); (E.W.)
- Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand
| | - Paiboon Panase
- Unit of Excellence Physiology and Sustainable Production of Terrestrial and Aquatic Animals (FF66-UoE014), School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand;
- Fisheries Division, School of Agriculture and Natural Resources, University of Phayao, Phayao 56000, Thailand
| | - Thipphiya Karirat
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (T.K.); (S.D.)
| | - Sirirat Deeseenthum
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (T.K.); (S.D.)
| | - Nyuk Ling Ma
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (T.K.); (S.D.)
| |
Collapse
|
6
|
Hnini M, El Attar I, Taha K, Aurag J. Genetic diversity, symbiotic efficiency, stress tolerance, and plant growth promotion traits of rhizobia nodulating Vachellia tortilis subsp. raddiana growing in dryland soils in southern Morocco. Syst Appl Microbiol 2023; 46:126434. [PMID: 37210974 DOI: 10.1016/j.syapm.2023.126434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
In the present study, we analyzed the genetic diversity, phylogenetic relationships, stress tolerance, phytobeneficial traits, and symbiotic characteristics of rhizobial strains isolated from root nodules of Vachellia tortilis subsp. raddiana grown in soils collected in the extreme Southwest of the Anti-Atlas Mountains in Morocco. Subsequent to Rep-PCR fingerprinting, 16S rDNA gene sequencing of 15 representative strains showed that all of them belong to the genus Ensifer. Phylogenetic analysis and concatenation of the housekeeping genes gyrB, rpoB, recA, and dnaK revealed that the entire collection (except strain LMR678) shared 99.08 % to 99.92% similarity with Ensifer sp. USDA 257 and 96.92% to 98.79% with Sinorhizobium BJ1. Phylogenetic analysis of nodC and nodA sequences showed that all strains but one (LMR678) formed a phylogenetic group with the type strain "E. aridi" LMR001T (similarity over 98%). Moreover, it was relevant that most strains belong to the symbiovar vachelliae. In vitro tests revealed that five strains produced IAA, four solubilized inorganic phosphate, and one produced siderophores. All strains showed tolerance to NaCl concentrations ranging from 2 to 12% and grew at up to 10% of PEG6000. A greenhouse plant inoculation test conducted during five months demonstrated that most rhizobial strains were infective and efficient. Strains LMR688, LMR692, and LMR687 exhibited high relative symbiotic efficiency values (respectively 231.6 %, 171.96 %, and 140.84 %). These strains could be considered as the most suitable candidates for inoculation of V. t. subsp. raddiana, to be used as a pioneer plant for restoring arid soils threatened with desertification.
Collapse
Affiliation(s)
- Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000 Rabat, Morocco
| | - Imane El Attar
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000 Rabat, Morocco
| | - Kaoutar Taha
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000 Rabat, Morocco
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000 Rabat, Morocco.
| |
Collapse
|
7
|
Rajendran V, Krishnaswamy VG, Kumar PS, S A, Vajiravelu S. Biocompatible nanofiber from exopolysaccharide produced by moderately halophilic Paenibacillus alvei. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
8
|
Hnini M, Taha K, Aurag J. Molecular identification and characterization of phytobeneficial osmotolerant endophytic bacteria inhabiting root nodules of the Saharan tree Vachellia tortilis subsp. raddiana. Arch Microbiol 2022; 205:45. [PMID: 36576567 DOI: 10.1007/s00203-022-03358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022]
Abstract
Nodular endophytes of drought-tolerant legumes are understudied. For this reason, we have isolated and studied non-symbiotic endophytic bacteria from nodules of Vachellia tortilis subsp. raddiana, a leguminous tree adapted to the harsh arid climate of Southern Morocco. Rep-PCR analysis followed by 16S rDNA sequencing revealed two main genera, Pseudomonas and Bacillus. Isolates responded variably to salt and water stresses, and mostly produced exopolysaccharides. Differences concerned also plant growth-promoting activities: phosphate, potassium, and zinc solubilization; biological nitrogen fixation; auxin, siderophore, ammonia, and HCN production; and ACC deaminase activity. Some strains exhibited antagonistic activities against phytopathogenic fungi (Fusarium oxysporum and Botrytis cinerea) and showed at least two enzymatic activities (cellulase, protease, chitinase). Four selected strains inoculated to vachellia plants under controlled conditions have shown significant positive impacts on plant growth parameters. These strains are promising bio-inoculants for vachellia plants to be used in reforestation programs in arid areas increasingly threatened by desertification.
Collapse
Affiliation(s)
- Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco
| | - Kaoutar Taha
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, 10000, Rabat, Morocco.
| |
Collapse
|
9
|
Lv F, Zhan Y, Lu W, Ke X, Shao Y, Ma Y, Zheng J, Yang Z, Jiang S, Shang L, Ma Y, Cheng L, Elmerich C, Yan Y, Lin M. Regulation of hierarchical carbon substrate utilization, nitrogen fixation, and root colonization by the Hfq/Crc/CrcZY genes in Pseudomonas stutzeri. iScience 2022; 25:105663. [PMID: 36505936 PMCID: PMC9730152 DOI: 10.1016/j.isci.2022.105663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Bacteria of the genus Pseudomonas consume preferred carbon substrates in nearly reverse order to that of enterobacteria, and this process is controlled by RNA-binding translational repressors and regulatory ncRNA antagonists. However, their roles in microbe-plant interactions and the underlying mechanisms remain uncertain. Here we show that root-associated diazotrophic Pseudomonas stutzeri A1501 preferentially catabolizes succinate, followed by the less favorable substrate citrate, and ultimately glucose. Furthermore, the Hfq/Crc/CrcZY regulatory system orchestrates this preference and contributes to optimal nitrogenase activity and efficient root colonization. Hfq has a central role in this regulatory network through different mechanisms of action, including repressing the translation of substrate-specific catabolic genes, activating the nitrogenase gene nifH posttranscriptionally, and exerting a positive effect on the transcription of an exopolysaccharide gene cluster. Our results illustrate an Hfq-mediated mechanism linking carbon metabolism to nitrogen fixation and root colonization, which may confer rhizobacteria competitive advantages in rhizosphere environments.
Collapse
Affiliation(s)
- Fanyang Lv
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhua Zhan
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Lu
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiubin Ke
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahui Shao
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiyuan Ma
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Zheng
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhimin Yang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Jiang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liguo Shang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yao Ma
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | | | - Yongliang Yan
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China,Corresponding author
| | - Min Lin
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China,Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China,Corresponding author
| |
Collapse
|
10
|
High-Molecular-Weight Dextran-Type Exopolysaccharide Produced by the Novel Apilactobacillus waqarii Improves Metabolic Syndrome: In Vitro and In Vivo Analyses. Int J Mol Sci 2022; 23:ijms232012692. [PMID: 36293544 PMCID: PMC9603972 DOI: 10.3390/ijms232012692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Metabolic syndrome is a leading medical concern that affects one billion people worldwide. Metabolic syndrome is defined by a clustering of risk factors that predispose an individual to cardiovascular disease, diabetes and stroke. In recent years, the apparent role of the gut microbiota in metabolic syndrome has drawn attention to microbiome-engineered therapeutics. Specifically, lactic acid bacteria (LAB) harbors beneficial metabolic characteristics, including the production of exopolysaccharides and other microbial byproducts. We recently isolated a novel fructophilic lactic acid bacterium (FLAB), Apilactobacillus waqarii strain HBW1, from honeybee gut and found it produces a dextran-type exopolysaccharide (EPS). The objective of this study was to explore the therapeutic potential of the new dextran in relation to metabolic syndrome. Findings revealed the dextran's ability to improve the viability of damaged HT-29 intestinal epithelial cells and exhibit antioxidant properties. In vivo analyses demonstrated reductions in body weight gain and serum cholesterol levels in mice supplemented with the dextran, compared to control (5% and 17.2%, respectively). Additionally, blood glucose levels decreased by 16.26% following dextran supplementation, while increasing by 15.2% in non-treated mice. Overall, this study displays biotherapeutic potential of a novel EPS to improve metabolic syndrome and its individual components, warranting further investigation.
Collapse
|
11
|
Rafique M, Ali A, Naveed M, Abbas T, Al-Huqail AA, Siddiqui MH, Nawaz A, Brtnicky M, Holatko J, Kintl A, Kucerik J, Mustafa A. Deciphering the Potential Role of Symbiotic Plant Microbiome and Amino Acid Application on Growth Performance of Chickpea Under Field Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:852851. [PMID: 35646024 PMCID: PMC9134094 DOI: 10.3389/fpls.2022.852851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
The unprecedented rise in the human population has increased pressure on agriculture production. To enhance the production of crops, farmers mainly rely on the use of chemical fertilizers and pesticides, which have, undoubtedly, increased the production rate but at the cost of losing sustainability of the environment in the form of genetic erosion of indigenous varieties of crops and loss of fertile land. Therefore, farming practices need to upgrade toward the use of biological agents to maintain the sustainability of agriculture and the environment. In this context, using microbial inoculants and amino acids may present a more effective, safer, economical, and sustainable alternative means of realizing higher productivity of crops. Therefore, field experiments were performed on chickpea for two succeeding years using Rhizobium and L-methionine (at three levels, i.e., 5, 10, and 15 mg L-1) separately and in combinations. The results show that the application of Rhizobium and all the three levels of L-methionine increased the growth and yield of chickpea. There was a higher response to a lower dose of L-methionine, i.e., 5 mg L-1. It has been found that maximum grain yield (39.96 and 34.5% in the first and second years, respectively) of chickpea was obtained with the combined use of Rhizobium and L-methionine (5 mg L-1). This treatment was also the most effective in enhancing nodule number (91.6 and 58.19%), leghemoglobin (161.1 and 131.3%), and protein content (45.2 and 45%) of plants in both years. Likewise, photosynthetic pigments and seed chemical composition were significantly improved by Rhizobium inoculation. However, these effects were prominent when Rhizobium inoculation was accompanied by L-methionine. In conclusion, utilizing the potential of combined use of L-methionine and microbial inoculant could be a better approach for developing sustainable agriculture production.
Collapse
Affiliation(s)
- Munazza Rafique
- Soil Bacteriology Section, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Abid Ali
- Soil Bacteriology Section, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Tasawar Abbas
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Asma A. Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad Nawaz
- Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Agricultural Research, Ltd., Troubsko, Czechia
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Brno, Czechia
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Prague, Czechia
| |
Collapse
|
12
|
Isolation, identification, cultivation and determination of antimicrobial β-glucan from a wild-termite mushroom Termitomyces heimii RFES 230662. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Solberg A, Mo IV, Aachmann FL, Schatz C, Christensen BE. Alginate-based diblock polymers: preparation, characterization and Ca-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d1py00727k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Renewable resources can provide a range of different polysaccharide blocks that can be used to prepare new types of stimuli-responsive polysaccharide-based block copolymers.
Collapse
Affiliation(s)
- Amalie Solberg
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Ingrid V. Mo
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Finn L. Aachmann
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| | - Christophe Schatz
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Bjørn E. Christensen
- NOBIPOL, Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, NO-7491 Trondheim, Norway
| |
Collapse
|
14
|
Vaishnav A, Upadhayay K, Tipre D, Dave S. Utilization of mixed fruit waste for exopolysaccharide production by Bacillus species SRA4: medium formulation and its optimization. 3 Biotech 2020; 10:550. [PMID: 33269184 DOI: 10.1007/s13205-020-02545-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/06/2020] [Indexed: 11/24/2022] Open
Abstract
The main focus of this research work was to carry out the fermentative production of EPS with mixed fruit waste as substrate. The medium formulation studied by sequential addition of medium components and replacement of sugar with mixed fruit waste. Amongst the six species of Bacillus studied, Bacillus species SRA4 produced EPS in range of 3.0-17.9 g/L, which was highest amongst all the species selected for the study. Thus for further optimization, the response surface methodology was used making use of Bacillus species SRA4. EPS production enhanced to 23.75 g/L. In 10 L shake flask and fermenter scale-up study was carried out. In the study, 10 L flask showed the highest EPS production of 17.95 g/L in 120 h, whereas in 10 L fermenter, it was as high as 25.1 g/L that too in 72 h only. The optimization study resulted in 1.76-fold increase in EPS production with nearly 48 h reduction in EPS production time as compared to initial production procedure. Replacement of sucrose with fruit waste extract made the process environmentally friendly; omission of l-cystine and use of 50% reduced amount of sodium acetate in the medium lowered the production cost of EPS. This method also solved the fruit waste disposal problem.
Collapse
Affiliation(s)
- Avni Vaishnav
- Department of Biochemistry and Biotechnology, Saint Xavier's Collage, Ahmedabad, India
| | - Kinjal Upadhayay
- Department of Biochemistry and Biotechnology, Saint Xavier's Collage, Ahmedabad, India
| | - Devayani Tipre
- Department of Microbiology, School of Science, Gujarat University, Ahmedabad, India
| | - Shailesh Dave
- Loyola Centre for Research and Development, Xavier's Research Foundation, Saint Xavier's Collage Campus, Ahmedabad, India
| |
Collapse
|
15
|
Abdullah NR, Sharif F, Azizan NH, Hafidz IFM, Supramani S, Usuldin SRA, Ahmad R, Wan-Mohtar WAAQI. Pellet diameter of Ganoderma lucidum in a repeated-batch fermentation for the trio total production of biomass-exopolysaccharide-endopolysaccharide and its anti-oral cancer beta-glucan response. AIMS Microbiol 2020; 6:379-400. [PMID: 33364534 PMCID: PMC7755588 DOI: 10.3934/microbiol.2020023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/19/2020] [Indexed: 11/18/2022] Open
Abstract
The pellet morphology and diameter range (DR) of Ganoderma lucidum were observed in a repeated-batch fermentation (RBF) for the trio total production of biomass, exopolysaccharide (EPS) and endopolysaccharide (ENS). Two factors were involved in RBF; broth replacement ratio (BRR: 60%, 75% and 90%) and broth replacement time point (BRTP: log, transition and stationary phase) in days. In RBF, 34.31 g/L of biomass favoured small-compact pellets with DR of 20.67 µm< d < 24.00 µm (75% BRR, day 11 of BRTP). EPS production of 4.34 g/L was prone to ovoid-starburst pellets with DR of 34.33 µm< d <35.67 µm (75% BRR, day 13 of BRTP). Meanwhile, the highest 2.43 g/L of ENS production favoured large-hollow pellets with DR of 34.00 µm< d < 38.67 µm (90% BRR, day 13 of BRTP). In addition, RBF successfully shortened the biomass-EPS–ENS fermentation period (31, 33 and 35 days) from batch to 5 days, in seven consecutive cycles of RBF. In a FTIR detection, β-glucan (BG) from EPS and ENS extracts were associated with β-glycosidic linkages (2925 cm−1, 1635 cm−1, 1077 cm−1, 920 cm−1 and 800 cm−1 wavelengths) with similar 1H NMR spectral behaviour (4.58, 3.87 and 3.81 ppm). Meanwhile, 4 mg/L of BG gave negative cytotoxic effects on normal gingival cell line (hGF) but induced antiproliferation (IC50 = 0.23 mg/mL) against cancerous oral Asian cellosaurus cell line (ORL-48). Together, this study proved that G. lucidum mycelial pellets could withstand seven cycles of long fermentation condition and possessed anti-oral cancer beta-glucan, which suits large-scale natural drug fermentation.
Collapse
Affiliation(s)
- Nur Raihan Abdullah
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti of Malaya, 50603, Kuala Lumpur, Malaysia.,Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Faez Sharif
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Nur Hafizah Azizan
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Ismail Fitri Mohd Hafidz
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Sugenendran Supramani
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Siti Rokhiyah Ahmad Usuldin
- Agro-Biotechnology Institute, Malaysia (ABI), National Institutes Biotechnology Malaysia (NIBM), C/O HQ MARDI, 43400, Serdang, Selangor, Malaysia
| | - Rahayu Ahmad
- Halal Action Laboratory, Kolej Genius Insan, University Sains Islam Malaysia, Bandar Baru Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti of Malaya, 50603, Kuala Lumpur, Malaysia.,Bioscience Research Institute, Athlone Institute of Technology, Ireland
| |
Collapse
|
16
|
Abedfar A, Abbaszadeh S, Hosseininezhad M, Taghdir M. RETRACTED: Physicochemical and biological characterization of the EPS produced by L. cidophilus isolated from rice bran sourdough. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109373] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Farinazzo FS, Valente LJ, Almeida MB, Simionato AS, Carlos Fernandes MT, Ishii Mauro CS, Bosso Tomal AA, Garcia S. Characterization and antioxidant activity of an exopolysaccharide produced by Leuconostoc pseudomesenteroides JF17 from juçara fruits (Euterpe edulis Martius). Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Antioxidant Activities of an Exopolysaccharide (DeinoPol) Produced by the Extreme Radiation-Resistant Bacterium Deinococcus radiodurans. Sci Rep 2020; 10:55. [PMID: 31919371 PMCID: PMC6952347 DOI: 10.1038/s41598-019-56141-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/27/2019] [Indexed: 01/08/2023] Open
Abstract
Deinococcus radiodurans shows extreme resistance to a range of remarkable environmental stresses. Deinococcal exopolysaccharide (DeinoPol) is a component of the cell wall, but its role in stress resistance has not yet been well-described. In this study, we isolated and characterized DeinoPol from Deinococcus radiodurans R1 strain and investigated its application as an antioxidant agent. Bioinformatic analysis indicated that dra0033, encoding an ExoP-like protein, was involved in DeinoPol biosynthesis, and dra0033 mutation significantly decreased survival rates in response to stresses. Purified DeinoPol consists of different monosaccharides and has a molecular weight of approximately 80 to 100 kDa. DeinoPol also demonstrates highly protective effects on human keratinocytes in response to stress-induced apoptosis by effectively scavenging ROS. Taken together, these findings indicate that DeinoPol is the first reported deinococcal exopolysaccharide that might be used in cosmetics and pharmaceuticals as a safe and attractive radical scavenger.
Collapse
|
19
|
In-depth spectral characterization of antioxidative (1,3)-β-D-glucan from the mycelium of an identified tiger milk mushroom Lignosus rhinocerus strain ABI in a stirred-tank bioreactor. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101455] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Jamwal S, Ram B, Ranote S, Dharela R, Chauhan GS. New glucose oxidase-immobilized stimuli-responsive dextran nanoparticles for insulin delivery. Int J Biol Macromol 2019; 123:968-978. [DOI: 10.1016/j.ijbiomac.2018.11.147] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/02/2018] [Accepted: 11/15/2018] [Indexed: 12/12/2022]
|
21
|
Hereher F, ElFallal A, Abou-Dobara M, Toson E, Abdelaziz MM. Cultural optimization of a new exopolysaccharide producer “Micrococcus roseus”. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2018. [DOI: 10.1016/j.bjbas.2018.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
22
|
Ye G, Li G, Wang C, Ling B, Yang R, Huang S. Extraction and characterization of dextran from Leuconostoc pseudomesenteroides YB-2 isolated from mango juice. Carbohydr Polym 2018; 207:218-223. [PMID: 30600002 DOI: 10.1016/j.carbpol.2018.11.092] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023]
Abstract
An exopolysaccharide (EPS)-producing strain of YB-2 isolated from mango juice was identified as Leuconostoc pseudomesenteroides. The molecular weight (Mw) of this EPS was 7.67×105 Da. Gas chromatography (GC) analysis confirmed the presence of only glucose monomers. Fourier transform infrared (FT-IR) spectroscopy and nuclear magnetic resonance (NMR) spectra displayed the glucan nature of the EPS with 96.8% α-(1→6) and 3.2% branching α-(1→3) linkages. Scanning electron microscopy (SEM) showed smooth surfaces and compact structure. The water solubility index (WSI) and water-holding capacity (WHC) of dextran were 97.48±2.46% and 287.51±7.93%, respectively. The rheological analysis of dextran elucidated a non-Newtonian pseudoplastic behavior. The dextran revealed an inhibitory activity against Escherichia coli and Staphylococcus aureus with minimal inhibitory concentrations (MIC) of 2.0 mg/mL and 3.0 mg/mL, respectively.
Collapse
Affiliation(s)
- Guangbin Ye
- Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China; Medical College of Guangxi University, Guangxi, Nanning, 530004, PR China
| | - Genliang Li
- Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China
| | - Changli Wang
- Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China
| | - Bo Ling
- Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China
| | - Ruirui Yang
- Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China
| | - Suoyi Huang
- Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China; Key Laboratory of Guangxi's College for the Study of Characteristic Medicine in Youjiang River Basin, Youjiang Medical University for Nationalities, Guangxi, Baise, 533000, PR China.
| |
Collapse
|
23
|
El-Deeb NM, Yassin AM, Al-Madboly LA, El-Hawiet A. A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-κB inflammatory pathways in human colon cancer. Microb Cell Fact 2018; 17:29. [PMID: 29466981 PMCID: PMC5820793 DOI: 10.1186/s12934-018-0877-z] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The direct link between inflammatory bowel diseases and colorectal cancer is well documented. Previous studies have reported that some lactic acid bacterial strains could inhibit colon cancer progression however; the exact molecules involved have not yet been identified. So, in the current study, we illustrated the tumor suppressive effects of the newly identified Lactobacillus acidophilus DSMZ 20079 cell-free pentasaccharide against colon cancer cells. The chemical structure of the purified pentasaccharide was investigated by MALDI-TOF mass spectrum, 1D and 2D Nuclear Magnetic Resonance (NMR). The anticancer potentiality of the purified pentasaccharide against both Human colon cancer (CaCo-2) and Human breast cancer (MCF7) cell lines with its safety usage pattern were evaluated using cytotoxicity, annexin V quantification and BrdU incorporation assays. Also, the immunomodulatory effects of the identified compound were quantified on both LPS-induced PBMC cell model and cancer cells with monitoring the immunophenotyping of T and dendritic cell surface marker. At molecular level, the alteration in gene expression of both inflammatory and apoptotic pathways were quantified upon pentasaccharide-cellular treatment by RTqPCR. RESULTS The obtained data of the spectroscopic analysis, confirmed the structure of the newly extracted pentasaccharide; (LA-EPS-20079) to be: α-D-Glc (1→2)][α-L-Fuc(1→4)] α-D-GlcA(1→2) α-D-GlcA(1→2) α-D-GlcA. This pentasaccharide, recorded safe dose on normal mammalian cells ranged from 2 to 5 mg/ml with cancer cells selectivity index, ranged of 1.96-51.3. Upon CaCo-2 cell treatment with the non-toxic dose of LA-EPS-20079, the inhibition percentage in CaCo-2 cellular viability, reached 80.65 with an increase in the ratio of the apoptotic cells in sub-G0/G1 cell cycle phase. Also, this pentasaccharide showed potentialities to up-regulate the expression of IKbα, P53 and TGF genes. CONCLUSION The anticancer potentialities of LA-EPS-20079 oligosaccharides against human colon cancer represented through its regulatory effects on both apoptotic and NF-κB inflammatory pathways.
Collapse
Affiliation(s)
- Nehal M El-Deeb
- Biopharmacetical Product Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Abdelrahman M Yassin
- Biopharmacetical Product Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Amr El-Hawiet
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
24
|
Tidona F, Meucci A, Povolo M, Pelizzola V, Zago M, Contarini G, Carminati D, Giraffa G. Applicability of Lactococcus hircilactis and Lactococcus laudensis as dairy cultures. Int J Food Microbiol 2018; 271:1-7. [PMID: 29459243 DOI: 10.1016/j.ijfoodmicro.2018.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/18/2017] [Accepted: 02/11/2018] [Indexed: 01/05/2023]
Abstract
The aim of this study was to evaluate whether Lactococcus hircilactis and Lactococcus laudensis can be used as starter cultures. To this end, the two lactococci were characterized for traits of technological and functional interest. Tests in milk included growth at 20, 25, 30, and 37 °C, flavor production, antioxidant (AO) activity, folate and exopolysaccharide (EPS) production. At 30 °C, which resulted the best growth temperature for both strains, Lc. hircilactis and Lc. laudensis lowered the pH of the milk to 4.8 and 5.5, respectively, after 24 h of incubation. Sugar and organic acid composition indicated a higher lactose utilization, coupled with a higher lactate accumulation, by Lc. hircilactis, while galactose was completely consumed by both species. Both strains showed a Cit- phenotype after growth in a selective medium containing citrate as the sole carbon source. Nevertheless, a small amount of citrate was used by both lactococci when grown in milk. The two strains were characterized by a different flavor production, showed high AO activity, and produced small amounts of EPS (~30 mg/L). Lactococcus laudensis showed a weak proteolytic activity while Lc. hircilactis was able to accumulate folate at levels four times higher than uninoculated milk. When the two lactococci were tested as starter cultures in small-scale cheesemaking trials, cheeses resulted of satisfying quality and contained amounts of ethanol, acetic acid, diacetyl and acetoin higher than controls, obtained using a commercial culture. The application of Lc. hircilactis and Lc. laudensis as aromatic cultures in cheesemaking is proposed.
Collapse
Affiliation(s)
- Flavio Tidona
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Aurora Meucci
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Milena Povolo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Valeria Pelizzola
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Miriam Zago
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Giovanna Contarini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Domenico Carminati
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Giorgio Giraffa
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy.
| |
Collapse
|
25
|
Zhou Q, Feng F, Yang Y, Zhao F, Du R, Zhou Z, Han Y. Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine. Int J Biol Macromol 2018; 107:2234-2241. [DOI: 10.1016/j.ijbiomac.2017.10.098] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/11/2017] [Accepted: 10/15/2017] [Indexed: 10/18/2022]
|
26
|
Sengupta D, Datta S, Biswas D. Towards a better production of bacterial exopolysaccharides by controlling genetic as well as physico-chemical parameters. Appl Microbiol Biotechnol 2018; 102:1587-1598. [DOI: 10.1007/s00253-018-8745-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 11/28/2022]
|
27
|
Characterization of Exopolysaccharide Produced by Streptococcus thermophilus CC30. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4201809. [PMID: 28815181 PMCID: PMC5549498 DOI: 10.1155/2017/4201809] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/23/2017] [Indexed: 11/18/2022]
Abstract
An exopolysaccharide (EPS) producing strain CC30 was isolated from raw milk and identified as Streptococcus thermophilus with morphological and 16S sequencing analysis. The strain was shown to produce 1.95 g/L of EPS when grown in skim milk lactose medium at 30°C by increasing the viscosity of the medium. The EPS was isolated and purified, and it was shown to consist of glucose and galactose in 1 : 1 ratio, with molecular weights ranging from 58 to 180 kDa. FTIR spectroscopy indicated the EPS to have amide, hydroxyl, and carboxyl groups. Under Atomic Force Microscopy, EPS showed spike-like lumps of EPS. Scanning Electron Microscopy (SEM) studies showed that it had irregular lumps with a coarse surface. The EPS displayed pseudoplastic nature. Thermogravimetric analysis (TGA) reported a degradation temperature of 110.84°C. The purified EPS exhibited reducing activity, hydrogen peroxide radical scavenging activity, and emulsification activity. The results of the present study indicated that EPS producing Streptococcus thermophilus could serve as a promising candidate for further exploitation in food industry.
Collapse
|
28
|
Liu L, Li H, Xu RH, Li PL. Expolysaccharides fromBifidobacterium animalisRH activates RAW 264.7 macrophages through toll-like receptor 4. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1230599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
29
|
Tidona F, Zago M, Corredig M, Locci F, Contarini G, Giraffa G, Carminati D. Selection ofStreptococcus thermophilusstrains able to produce exopolysaccharides in milk. INT J DAIRY TECHNOL 2016. [DOI: 10.1111/1471-0307.12295] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Flavio Tidona
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria; Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CREA-FLC); 26900 Lodi Italy
| | - Miriam Zago
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria; Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CREA-FLC); 26900 Lodi Italy
| | - Milena Corredig
- Department of Food Science; University of Guelph; Guelph ON, N1G 2W1 Canada
| | - Francesco Locci
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria; Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CREA-FLC); 26900 Lodi Italy
| | - Giovanna Contarini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria; Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CREA-FLC); 26900 Lodi Italy
| | - Giorgio Giraffa
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria; Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CREA-FLC); 26900 Lodi Italy
| | - Domenico Carminati
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria; Centro di Ricerca per le Produzioni Foraggere e Lattiero-Casearie (CREA-FLC); 26900 Lodi Italy
| |
Collapse
|
30
|
Vasanthakumari DS, Harikumar S, Beena DJ, Pandey A, Nampoothiri KM. Physicochemical Characterization of an Exopolysaccharide Produced by a Newly Isolated Weissella cibaria. Appl Biochem Biotechnol 2015; 176:440-53. [DOI: 10.1007/s12010-015-1586-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 03/12/2015] [Indexed: 11/28/2022]
|
31
|
Genome Sequences of Two Leuconostoc pseudomesenteroides Strains Isolated from Danish Dairy Starter Cultures. GENOME ANNOUNCEMENTS 2014; 2:2/3/e00484-14. [PMID: 24903866 PMCID: PMC4047445 DOI: 10.1128/genomea.00484-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The lactic acid bacterium Leuconostoc pseudomesenteroides can be found in mesophilic cheese starters, where it produces aromatic compounds from, e.g., citrate. Here, we present the draft genome sequences of two L. pseudomesenteroides strains isolated from traditional Danish cheese starters.
Collapse
|
32
|
Zheng JQ, Wang JZ, Shi CW, Mao DB, He PX, Xu CP. Characterization and antioxidant activity for exopolysaccharide from submerged culture of Boletus aereus. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Exploring polyelectrolytic features of the exudate from native Acacia nilotica for flocculating aqueous kaolin suspension. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.04.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Dertli E, Colquhoun IJ, Gunning AP, Bongaerts RJ, Le Gall G, Bonev BB, Mayer MJ, Narbad A. Structure and biosynthesis of two exopolysaccharides produced by Lactobacillus johnsonii FI9785. J Biol Chem 2013; 288:31938-51. [PMID: 24019531 PMCID: PMC3814790 DOI: 10.1074/jbc.m113.507418] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exopolysaccharides were isolated and purified from Lactobacillus johnsonii FI9785, which has previously been shown to act as a competitive exclusion agent to control Clostridium perfringens in poultry. Structural analysis by NMR spectroscopy revealed that L. johnsonii FI9785 can produce two types of exopolysaccharide: EPS-1 is a branched dextran with the unusual feature that every backbone residue is substituted with a 2-linked glucose unit, and EPS-2 was shown to have a repeating unit with the following structure: -6)-α-Glcp-(1-3)-β-Glcp-(1-5)-β-Galf-(1-6)-α-Glcp-(1-4)-β-Galp-(1-4)-β-Glcp-(1-. Sites on both polysaccharides were partially occupied by substituent groups: 1-phosphoglycerol and O-acetyl groups in EPS-1 and a single O-acetyl group in EPS-2. Analysis of a deletion mutant (ΔepsE) lacking the putative priming glycosyltransferase gene located within a predicted eps gene cluster revealed that the mutant could produce EPS-1 but not EPS-2, indicating that epsE is essential for the biosynthesis of EPS-2. Atomic force microscopy confirmed the localization of galactose residues on the exterior of wild type cells and their absence in the ΔepsE mutant. EPS2 was found to adopt a random coil structural conformation. Deletion of the entire 14-kb eps cluster resulted in an acapsular mutant phenotype that was not able to produce either EPS-2 or EPS-1. Alterations in the cell surface properties of the EPS-specific mutants were demonstrated by differences in binding of an anti-wild type L. johnsonii antibody. These findings provide insights into the biosynthesis and structures of novel exopolysaccharides produced by L. johnsonii FI9785, which are likely to play an important role in biofilm formation, protection against harsh environment of the gut, and colonization of the host.
Collapse
Affiliation(s)
- Enes Dertli
- From the Gut Health and Food Safety Programme, Institute of Food Research, Colney, Norwich NR4 7UA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|