1
|
Sarmento-Cabral A, Fuentes-Fayos AC, Ordoñez FM, León-González AJ, Martínez-Fuentes AJ, Gahete MD, Luque RM. From pituitary cells to prostate gland in health and disease: direct and indirect endocrine connections. Rev Endocr Metab Disord 2025; 26:187-203. [PMID: 39910005 PMCID: PMC11920336 DOI: 10.1007/s11154-025-09948-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/07/2025]
Abstract
The prostate gland is an endocrine-sensitive organ responding to multiple stimuli. Its development and function are regulated by multiple hormones (i.e. steroids such as androgens, estrogens and glucocorticoids) but also by other key hormonal systems such as those comprised by insulin-like growth factor 1 and insulin, which are sourced by different tissues [e.g. testicles/adrenal-gland/adipose-tissue/liver/pancreas, etc.). Particularly important for the endocrine control of prostatic pathophysiology and anatomy are hormones produced and/or secreted by different cell types of the pituitary gland [growth-hormone, luteinizing-hormone, follicle-stimulating hormone, and prolactin, oxytocin, arginine-vasopressin and melanocyte-stimulating hormone], which affect prostate gland function either directly or indirectly under physiological and pathophysiological conditions [e.g. metabolic dysregulation (e.g. obesity), and prostate transformations (e.g. prostate cancer)]. This review summarizes the impact of all pituitary hormone types on prostate gland under these diverse conditions including in vivo and in vitro studies.
Collapse
Affiliation(s)
- André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain.
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain.
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Fernando Mata Ordoñez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Faculty of Health Sciences, Alfonso X el Sabio University, Villanueva de la Cañada, 28691, Spain
| | - Antonio J León-González
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, 41012, Spain
| | - Antonio J Martínez-Fuentes
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Avda. Menéndez Pidal s/n., Cordoba, 14004, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, Cordoba, 14014, Spain.
- Reina Sofia University Hospital (HURS), Cordoba, 14004, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Cordoba, 14004, Spain.
| |
Collapse
|
2
|
Danilowicz K, Sosa S. Acromegaly and Cancer: An Update. Arch Med Res 2023; 54:102914. [PMID: 38007382 DOI: 10.1016/j.arcmed.2023.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
Acromegaly is a chronic and rare disease. The diagnosis usually takes several years. Multiple comorbidities are associated with acromegaly. Long-term exposure to growth factors may lead to complications such as the development of benign or malignant tumors. However, the association between acromegaly and cancer remains a matter of debate due to multiple limitations in epidemiological data. There is controversy between acromegaly and mortality, but evidence shows a significant improvement in mortality rates with disease control and careful management of comorbidities. Older age, increased growth hormone levels (GH) at last follow-up, higher insulin-like growth factor-1 (IGF-1) levels at diagnosis, malignancy and radiotherapy were proposed as independent predictors of mortality. In this review we summarize the current state of knowledge in this field. Incidence of different cancer types is described. Rigorous surveillance of endocrine diseases may contribute to increased tumor detection. Personalized screening should probably be recommended.
Collapse
Affiliation(s)
- Karina Danilowicz
- Division of Endocrinology, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Soledad Sosa
- Division of Endocrinology, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
3
|
Cannarella R, Condorelli RA, Barbagallo F, La Vignera S, Calogero AE. Endocrinology of the Aging Prostate: Current Concepts. Front Endocrinol (Lausanne) 2021; 12:554078. [PMID: 33692752 PMCID: PMC7939072 DOI: 10.3389/fendo.2021.554078] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Benign prostate hyperplasia (BPH), one of the most common diseases in older men, adversely affects quality-of-life due to the presence of low urinary tract symptoms (LUTS). Numerous data support the presence of an association between BPH-related LUTS (BPH-LUTS) and metabolic syndrome (MetS). Whether hormonal changes occurring in MetS play a role in the pathogenesis of BPH-LUTS is a debated issue. Therefore, this article aimed to systematically review the impact of hormonal changes that occur during aging on the prostate, including the role of sex hormones, insulin-like growth factor 1, thyroid hormones, and insulin. The possible explanatory mechanisms of the association between BPH-LUTS and MetS are also discussed. In particular, the presence of a male polycystic ovarian syndrome (PCOS)-equivalent may represent a possible hypothesis to support this link. Male PCOS-equivalent has been defined as an endocrine syndrome with a metabolic background, which predisposes to the development of type II diabetes mellitus, cardiovascular diseases, prostate cancer, BPH and prostatitis in old age. Its early identification would help prevent the onset of these long-term complications.
Collapse
|
4
|
Tenuta M, Carlomagno F, Cangiano B, Kanakis G, Pozza C, Sbardella E, Isidori AM, Krausz C, Gianfrilli D. Somatotropic-Testicular Axis: A crosstalk between GH/IGF-I and gonadal hormones during development, transition, and adult age. Andrology 2020; 9:168-184. [PMID: 33021069 DOI: 10.1111/andr.12918] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-somatotropic (HPS) axes are strongly interconnected. Interactions between these axes are complex and poorly understood. These interactions are characterized by redundancies in reciprocal influences at each level of regulation and the combination of endocrine and paracrine effects that change during development. OBJECTIVES To comprehensively review the crosstalk between the HPG and HPS axes and related pathological and clinical aspects during various life stages of male subjects. MATERIALS AND METHODS A thorough search of publications available in PubMed was performed using proper keywords. RESULTS Molecular studies confirmed the expressions of growth hormone (GH) and insulin-like growth factor-I (IGF-I) receptors on the HPG axis and reproductive organs, indicating a possible interaction between HPS and HPG axes at various levels. Insulin growth factors participate in sexual differentiation during fetal development, indicating that normal HPS axis activity is required for proper testicular development. IGF-I contributes to correct testicular position during minipuberty, determines linear growth during childhood, and promotes puberty onset and pace through gonadotropin-releasing hormone activation. IGF-I levels are high during transition age, even when linear growth is almost complete, suggesting its role in reproductive tract maturation. Patients with GH deficiency (GHD) and insensitivity (GHI) exhibit delayed puberty and impaired genital development; replacement therapy in such patients induces proper pubertal development. In adults, few studies have suggested that lower IGF-I levels are associated with impaired sperm parameters. DISCUSSION AND CONCLUSION The role of GH-IGF-I in testicular development remains largely unexplored. However, it is important to evaluate gonadic development in children with GHD. Additionally, HPS axis function should be evaluated in children with urogenital malformation or gonadal development alterations. Correct diagnosis and prompt therapeutic intervention are needed for healthy puberty, attainment of complete gonadal development during transition age, and fertility potential in adulthood.
Collapse
Affiliation(s)
- Marta Tenuta
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Biagio Cangiano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - George Kanakis
- Athens Naval and Veterans Affairs Hospital, Athens, Greece
| | - Carlotta Pozza
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Emilia Sbardella
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | |
Collapse
|
5
|
Parolin M, Dassie F, Vettor R, Maffei P. Acromegaly and ultrasound: how, when and why? J Endocrinol Invest 2020; 43:279-287. [PMID: 31502218 DOI: 10.1007/s40618-019-01111-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/03/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acromegaly is a rare disease caused by an excess of growth hormone and insulin-like growth factor 1. It is usually diagnosed because of typical signs such as macroglossia, acral enlargement, jaw prognathism and malocclusion. Systemic complications are a major cause of morbidity and mortality in acromegaly, and many patients remain undiagnosed for several years. Increased ultrasound (US) application in the general population, and including among acromegaly patients, has revealed many suggestive features which, taken together with clinical suspicion, could induce suspicion of this disease. PURPOSE This review describes main US features in acromegaly. Echocardiography shows a typical cardiomyopathy, characterized by left ventricular hypertrophy, diastolic and systolic dysfunction, aortic and mitral regurgitation, and increased aortic root diameters. US preclinical markers of atherosclerosis, such as intima media thickness (IMT), seem also to be impaired. Visceromegaly and increased organ stiffness are other features of acromegaly, including enlarged prostate, kidneys, liver, and thyroid. In addition, other US findings are: renal cysts, micronephrolithiasis, impairment of renal haemodynamic parameters, gallstones and gallbladder polyps, hepatic steatosis, thyroid nodules, multinodular goiter, and polycystic ovaries. Musculoskeletal US findings are increased cartilage thickness, impaired density and elasticity of bones, nerve enlargement, carpal and cubital tunnel syndrome, and trigger finger. CONCLUSIONS Acromegaly patients frequently present systemic complications and a diagnostic delay. US features of acromegaly are not specific, but could potentially have a key role in early detection of the disease in the presence of typical clinical features.
Collapse
Affiliation(s)
- M Parolin
- Clinica Medica 3, Department of Medicine (DIMED), University of Padua, via Giustiniani 2, 35128, Padua, Italy.
| | - F Dassie
- Clinica Medica 3, Department of Medicine (DIMED), University of Padua, via Giustiniani 2, 35128, Padua, Italy
| | - R Vettor
- Clinica Medica 3, Department of Medicine (DIMED), University of Padua, via Giustiniani 2, 35128, Padua, Italy
| | - P Maffei
- Clinica Medica 3, Department of Medicine (DIMED), University of Padua, via Giustiniani 2, 35128, Padua, Italy
| |
Collapse
|
6
|
Recouvreux MV, Wu JB, Gao AC, Zonis S, Chesnokova V, Bhowmick N, Chung LW, Melmed S. Androgen Receptor Regulation of Local Growth Hormone in Prostate Cancer Cells. Endocrinology 2017; 158:2255-2268. [PMID: 28444169 PMCID: PMC5505214 DOI: 10.1210/en.2016-1939] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/18/2017] [Indexed: 01/22/2023]
Abstract
Prostate cancer (PCa) growth is mainly driven by androgen receptor (AR), and tumors that initially respond to androgen deprivation therapy (ADT) or AR inhibition usually relapse into a more aggressive, castration-resistant PCa (CRPC) stage. Circulating growth hormone (GH) has a permissive role in PCa development in animal models and in human PCa xenograft growth. As GH and GH receptor (GHR) are both expressed in PCa cells, we assessed whether prostatic GH production is linked to AR activity and whether GH contributes to the castration-resistant phenotype. Using online datasets, we found that GH is highly expressed in human CRPC. We observed increased GH expression in castration-resistant C4-2 compared with castration-sensitive LNCaP cells as well as in enzalutamide (MDV3100)-resistant (MDVR) C4-2B (C4-2B MDVR) cells compared with parental C4-2B. We describe a negative regulation of locally produced GH by androgens/AR in PCa cells following treatment with AR agonists (R1881) and antagonists (enzalutamide, bicalutamide). We also show that GH enhances invasive behavior of CRPC 22Rv1 cells, as reflected by increased migration, invasion, and anchorage-independent growth, as well as expression of matrix metalloproteases. Moreover, GH induces expression of the AR splice variant 7, which correlates with antiandrogen resistance, and also induces insulinlike growth factor 1, which is implicated in PCa progression and ligand-independent AR activation. In contrast, blockade of GH action with the GHR antagonist pegvisomant reverses these effects both in vitro and in vivo. GH induction following ADT or AR inhibition may contribute to CRPC progression by bypassing androgen growth requirements.
Collapse
Affiliation(s)
| | - J. Boyang Wu
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, 99202
| | - Allen C. Gao
- Department of Urology, University of California at Davis, Sacramento, California, 95817
| | - Svetlana Zonis
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| | - Vera Chesnokova
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| | - Neil Bhowmick
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
| | - Leland W. Chung
- Uro-Oncology Research Program, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048
| | - Shlomo Melmed
- Pituitary Center, Cedars Sinai Medical Center, Los Angeles, California, 90048
| |
Collapse
|
7
|
L-López F, Sarmento-Cabral A, Herrero-Aguayo V, Gahete MD, Castaño JP, Luque RM. Obesity and metabolic dysfunction severely influence prostate cell function: role of insulin and IGF1. J Cell Mol Med 2017; 21:1893-1904. [PMID: 28244645 PMCID: PMC5571563 DOI: 10.1111/jcmm.13109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/01/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major health problem that courses with severe comorbidities and a drastic impairment of homeostasis and function of several organs, including the prostate gland (PG). The endocrine–metabolic regulatory axis comprising growth hormone (GH), insulin and IGF1, which is drastically altered under extreme metabolic conditions such as obesity, also plays relevant roles in the development, modulation and homeostasis of the PG. However, its implication in the pathophysiological interplay between obesity and prostate function is still to be elucidated. To explore this association, we used a high fat–diet obese mouse model, as well as in vitro primary cultures of normal‐mouse PG cells and human prostate cancer cell lines. This approach revealed that most of the components of the GH/insulin/IGF1 regulatory axis are present in PGs, where their expression pattern is altered under obesity conditions and after an acute insulin treatment (e.g. Igfbp3), which might have some pathophysiological implications. Moreover, our results demonstrate, for the first time, that the PG becomes severely insulin resistant under diet‐induced obesity in mice. Finally, use of in vitro approaches served to confirm and expand the conception that insulin and IGF1 play a direct, relevant role in the control of normal and pathological PG cell function. Altogether, these results uncover a fine, germane crosstalk between the endocrine–metabolic status and the development and homeostasis of the PG, wherein key components of the GH, insulin and IGF1 axes could play a relevant pathophysiological role.
Collapse
Affiliation(s)
- Fernando L-López
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - André Sarmento-Cabral
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Manuel D Gahete
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Justo P Castaño
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| | - Raúl M Luque
- Maimónides Institute of Biomedical Research of Cordoba (IMIBIC), Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.,Reina Sofía University Hospital, Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Cordoba, Spain.,International Campus of Excellence on Agrifood, CeiA3, Cordoba, Spain
| |
Collapse
|
8
|
Ishikawa M, Kato M, Sasaki H, Morii T, Fujita H, Kakei M, Narita T, Yamada Y. Poorly-controlled acromegaly accompanied by subclinical adrenal Cushing's syndrome after surgery for multiple endocrine tumors. Intern Med 2015; 54:617-20. [PMID: 25786452 DOI: 10.2169/internalmedicine.54.2782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 48-year-old woman diagnosed with acromegaly 21 years earlier presented at our hospital with a left adrenal tumor. Her medical history included breast cancer, thyroid cancer and an incompletely resected growth hormone (GH)-producing pituitary adenoma. Endocrinological and radiological examinations revealed subclinical adrenal Cushing's syndrome. She subsequently underwent left adrenalectomy, followed by glucocorticoid replacement therapy. Her GH and insulin-like growth factor-1 levels were insufficiently controlled, and pegvisomant was administered in addition to octreotide acetate. Following adrenalectomy, a giant hepatic hemangioma and papillary thyroid carcinoma in the residual right lobe developed, indicating the high risk of tumor development in patients with acromegaly.
Collapse
Affiliation(s)
- Motoko Ishikawa
- Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Bayram F, Bitgen N, Donmez-Altuntas H, Cakir I, Hamurcu Z, Sahin F, Simsek Y, Baskol G. Increased genome instability and oxidative DNA damage and their association with IGF-1 levels in patients with active acromegaly. Growth Horm IGF Res 2014; 24:29-34. [PMID: 24382376 DOI: 10.1016/j.ghir.2013.12.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 11/06/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
Abstract
OBJECTIVE The objectives of this study were to assess cytokinesis-block micronucleus cytome (CBMN Cyt) assay parameters and also oxidative DNA damage in patients with active acromegaly and controls and to assess the relationship between age, serum insulin-like growth factor 1 (IGF-1) levels, pituitary adenoma diameters, 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels and CBMN Cyt assay parameters in patients with active acromegaly. DESIGN The study population included 30 patients with active acromegaly and 30 age- and sex-matched healthy controls. CBMN Cyt assay parameters in peripheral blood lymphocytes of patients with active acromegaly and controls were evaluated and plasma 8-OHdG levels were measured. RESULTS Frequencies of micronucleus (MN), nucleoplasmic bridges (NPBs) and nuclear buds (NBUDs) in lymphocytes of patients with acromegaly were found to be significantly higher than those in controls (p<0.001, p<0.001, p<0.001, respectively). The frequencies of apoptotic and necrotic cells in lymphocytes of patients with acromegaly were found to be significantly higher than those in controls (p<0.001 and p<0.001 respectively). No statistically significant differences in the number of cells in metaphase, the number of bi-nucleated cells (M2), the number of tri-nucleated cells (M3), the number of tetra-nucleated cells (M4) and nuclear division index (NDI) values were observed between patients and controls (p>0.05). Plasma 8-OHdG (ng/ml) levels in patients with acromegaly were found to be significantly higher than those in controls (p<0.005). MN frequency in the lymphocytes of patients with acromegaly increased with elevated serum IGF-1 levels (p<0.05), whereas the number of NPBs and the frequency of apoptotic cells decreased with elevated serum IGF-1 levels (p<0.01 and p<0.05 respectively). CONCLUSIONS Both the increase in chromosomal/oxidative DNA damage and the positive association between MN frequency and serum IGF-1 levels may predict an increased risk of malignancy in acromegalic patients. Long-term follow-up of patients with acromegaly will be necessary to establish the degree of cancer risk in this population.
Collapse
Affiliation(s)
- Fahri Bayram
- Department of Endocrinology and Metabolism, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nazmiye Bitgen
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Ilkay Cakir
- Department of Endocrinology and Metabolism, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Fatma Sahin
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yasin Simsek
- Department of Endocrinology and Metabolism, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Gulden Baskol
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Bolfi F, Miot HA, Resende M, Mazeto GMSF, Romeiro FG, Yamashiro FDS, Nunes VDS. Frequency of various types of neoplasia in a group of acromegalic patients. ARQUIVOS BRASILEIROS DE ENDOCRINOLOGIA E METABOLOGIA 2013; 57:612-6. [PMID: 24343629 DOI: 10.1590/s0004-27302013000800005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 05/23/2013] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To determine the frequency of colon cancer, primary hyperparathyroidism, thyroid tumor, and skin cancer in all acromegalic patients in follow-up at the Clinics Hospital - Botucatu Medical School, from 2005 to 2011. SUBJECTS AND METHODS These patients were evaluated retrospectively for colon cancer, primary hyperparathyroidism, dermatological, and thyroid tumors. RESULTS Of 29 patients included at the beginning of the study, two were excluded. Among 19 patients submitted to colonoscopy, one presented colon adenocarcinoma (5%). Thyroid nodules were present in 63% of patients, and papilliferous carcinoma was confirmed in two patients (7,7%). Four patients were confirmed as having primary hyperparathyroidism (15%). The most common dermatologic lesions were thickened skin (100%), acrochordons (64%), epidermal cysts (50%), and pseudo-acanthosis nigricans (50%). Only one patient presented basal cell carcinoma. CONCLUSION Although a small number of acromegalic patients was studied, our findings confirm the high frequency of thyroid neoplasias and primary hyperparathyroidism in this group of patients.
Collapse
|
11
|
Iglesias-Gato D, Chuan YC, Wikström P, Augsten S, Jiang N, Niu Y, Seipel A, Danneman D, Vermeij M, Fernandez-Perez L, Jenster G, Egevad L, Norstedt G, Flores-Morales A. SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer. Carcinogenesis 2013; 35:24-33. [PMID: 24031028 DOI: 10.1093/carcin/bgt304] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
UNLABELLED Anabolic signals such as androgens and the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis play an essential role in the normal development of the prostate but also in its malignant transformation. In this study, we investigated the role of suppressor of cytokine signaling 2 (SOCS2) as mediator of the cross talk between androgens and GH signals in the prostate and its potential role as tumor suppressor in prostate cancer (PCa). We observed that SOCS2 protein levels assayed by immunohistochemistry are elevated in hormone therapy-naive localized prostatic adenocarcinoma in comparison with benign tissue. In contrast, however, castration-resistant bone metastases exhibit reduced levels of SOCS2 in comparison with localized or hormone naive, untreated metastatic tumors. In PCa cells, SOCS2 expression is induced by androgens through a mechanism that requires signal transducer and activator of transcription 5 protein (STAT5) and androgen receptor-dependent transcription. Consequentially, SOCS2 inhibits GH activation of Janus kinase 2, Src and STAT5 as well as both cell invasion and cell proliferation in vitro. In vivo, SOCS2 limits proliferation and production of IGF-1 in the prostate in response to GH. Our results suggest that the use of GH-signaling inhibitors could be of value as a complementary treatment for castration-resistant PCa. SUMMARY Androgen induced SOCS2 ubiquitin ligase expression and inhibited GH signaling as well as cell proliferation and invasion in PCa, whereas reduced SOCS2 was present in castration-resistant cases. GH-signaling inhibitors might be a complementary therapeutic option for advanced PCa.
Collapse
Affiliation(s)
- Diego Iglesias-Gato
- Molecular Endocrinology Group, Department of Disease Biology, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Guaraldi F, Corazzini V, Gallia GL, Grottoli S, Stals K, Dalantaeva N, Frohman LA, Korbonits M, Salvatori R. Genetic analysis in a patient presenting with meningioma and familial isolated pituitary adenoma (FIPA) reveals selective involvement of the R81X mutation of the AIP gene in the pathogenesis of the pituitary tumor. Pituitary 2012; 15 Suppl 1:S61-7. [PMID: 22527616 DOI: 10.1007/s11102-012-0391-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Familial isolated pituitary adenoma (FIPA), defined as the occurrence of at least two cases of pituitary adenoma in a family that does not exhibit features of syndromic diseases, such as Carney complex or Multiple Endocrine Neoplasia type 1 or 4, is a rare autosomal dominant disease with low penetrance. About 20 % of the families with FIPA harbor inactivating mutation in aryl hydrocarbon receptor-interacting protein gene (AIP) associated with loss of heterozygosity of the same genetic locus (11q13) in the tumor. Rarely different types of extra-pituitary tumors have been described in the setting of AIP mutation-positive FIPA. We present the case of a patient who was diagnosed with acromegaly due to the AIP mutation c.241C>T (p.R81X) at the age of 34 years, and treated by transsphenoidal surgery. At the age of 43 years she was diagnosed with a meningioma, and at age 46 had recurrence of the somatotropinoma. Genetic studies demonstrated loss of the normal allele (by sequencing and microsatellite analysis) in DNA from the pituitary adenoma but not from the meningioma, suggesting a selective involvement of AIP mutation in the pathogenesis of the pituitary adenoma, and a casual association with the meningioma. Further investigations are required to define the exact role of AIP in non-pituitary tumorigenesis.
Collapse
Affiliation(s)
- Federica Guaraldi
- Division of Endocrinology, Department of Internal Medicine, University of Turin, 10126, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Hamurcu Z, Cakir I, Donmez-Altuntas H, Bitgen N, Karaca Z, Elbuken G, Bayram F. Micronucleus evaluation in mitogen-stimulated lymphocytes of patients with acromegaly. Metabolism 2011; 60:1620-6. [PMID: 21550080 DOI: 10.1016/j.metabol.2011.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/17/2011] [Accepted: 03/18/2011] [Indexed: 01/11/2023]
Abstract
Acromegaly is a syndrome characterized by a sustained elevation of circulating growth hormone and insulin-like growth factor-1 (IGF-1). Insulin-like growth factor-1 is a potent mitogen and has a role in the transformation of normal cells to malignant cells. This study aims to evaluate the spontaneous micronucleus (MN) frequency by using the cytokinesis-block MN assay to determine genetic damage in the lymphocytes of patients with acromegaly. The study was carried out in 20 patients who had active acromegaly and in 20 age- and sex-matched healthy controls. The MN values were measured in binucleated cells obtained from mitogen-stimulated lymphocytes of patients and control subjects. The distribution of binucleated cells with 1, 2, 3, or more MNs was also measured. We found significantly higher MN frequency values in the lymphocytes of acromegalic patients than in those of the control subjects (2.23 ± 0.68 vs 1.03 ± 0.54, P = .001). The MN frequency increased with increasing IGF-1 levels of acromegalic patients (P = .036, R = 0.47). We observed that the number of binucleated cells with 2 MNs was higher for the majority of patients with acromegaly than for control subjects. Furthermore, the receiver operating characteristic curve (area under the curve = 0.914, P < .0001) was calculated to assess the discriminative power of the MN frequency. Our results indicate that increased MN frequency in the lymphocytes of patients with acromegaly may reflect genomic instability and this increased MN frequency may be associated with elevated levels of circulating growth hormone and IGF-1.
Collapse
Affiliation(s)
- Zuhal Hamurcu
- Department of Medical Biology, Medical Faculty, Erciyes University, Kayseri, Turkey.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kumar PA, Kotlyarevska K, Dejkhmaron P, Reddy GR, Lu C, Bhojani MS, Menon RK. Growth hormone (GH)-dependent expression of a natural antisense transcript induces zinc finger E-box-binding homeobox 2 (ZEB2) in the glomerular podocyte: a novel action of gh with implications for the pathogenesis of diabetic nephropathy. J Biol Chem 2010; 285:31148-56. [PMID: 20682777 PMCID: PMC2951188 DOI: 10.1074/jbc.m110.132332] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 08/02/2010] [Indexed: 11/06/2022] Open
Abstract
Growth hormone (GH) excess results in structural and functional changes in the kidney and is implicated as a causative factor in the development of diabetic nephropathy (DN). Glomerular podocytes are the major barrier to the filtration of serum proteins, and altered podocyte function and/or reduced podocyte number is a key event in the pathogenesis of DN. We have previously shown that podocytes are a target for GH action. To elucidate the molecular basis for the effects of GH on the podocyte, we conducted microarray and RT-quantitative PCR analyses of immortalized human podocytes and identified zinc finger E-box-binding homeobox 2 (ZEB2) to be up-regulated in a GH dose- and time-dependent manner. We established that the GH-dependent increase in ZEB2 levels is associated with increased transcription of a ZEB2 natural antisense transcript required for efficient translation of the ZEB2 transcript. GH down-regulated expression of E- and P-cadherins, targets of ZEB2, and inhibited E-cadherin promoter activity. Mutation of ZEB2 binding sites on the E-cadherin promoter abolished this effect of GH on the E-cadherin promoter. Whereas GH increased podocyte permeability to albumin in a paracellular albumin influx assay, shRNA-mediated knockdown of ZEB2 expression abrogated this effect. We conclude that GH increases expression of ZEB2 in part by increasing expression of a ZEB2 natural antisense transcript. GH-dependent increase in ZEB2 expression results in loss of P- and E-cadherins in podocytes and increased podocyte permeability to albumin. Decreased expression of P- and E-cadherins is implicated in podocyte dysfunction and epithelial-mesenchymal transition observed in DN. We speculate that the actions of GH on ZEB2 and P- and E-cadherin expression play a role in the pathogenesis of microalbuminuria of DN.
Collapse
Affiliation(s)
| | | | | | | | - Chunxia Lu
- From Pediatrics and Communicable Diseases
| | | | - Ram K. Menon
- From Pediatrics and Communicable Diseases
- Molecular and Integrative Physiology, and
| |
Collapse
|