1
|
The theory of endobiogeny: biological modeling using downstream physiologic output as inference of upstream global system regulation. JOURNAL OF COMPLEXITY IN HEALTH SCIENCES 2020. [DOI: 10.21595/chs.2020.21072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
2
|
Supplementing the maternal diet of rats with butyrate enhances mitochondrial biogenesis in the skeletal muscles of weaned offspring. Br J Nutr 2017; 117:12-20. [DOI: 10.1017/s0007114516004402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractThe present study aimed to investigate the effects of maternal dietary butyrate supplementation on energy metabolism and mitochondrial biogenesis in offspring skeletal muscle and the possible mediating mechanisms. Virgin female rats were randomly assigned to either control or butyrate diets (1 % butyrate sodium) throughout gestation and lactation. At the end of lactation (21 d), the offspring were killed by exsanguination from the abdominal aorta under anaesthesia. The results showed that maternal butyrate supplementation throughout gestation and lactation did not affect offspring body weight. However, the protein expressions of G-protein-coupled receptors (GPR) 43 and 41 were significantly enhanced in offspring skeletal muscle of the maternal butyrate-supplemented group. The ATP content, most of mitochondrial DNA-encoded gene expressions, the cytochrome c oxidase subunit 1 and 4 protein contents and the mitochondrial DNA copy number were significantly higher in the butyrate group than in the control group. Meanwhile, the protein expressions of type 1 myosin heavy chain, mitochondrial transcription factor A, PPAR-coactivator-1α (PGC-1α) and uncoupling protein 3 were significantly increased in the gastrocnemius muscle of the treatment group compared with the control group. These results indicate for the first time that maternal butyrate supplementation during the gestation and lactation periods influenced energy metabolism and mitochondrial biogenesis through the GPR and PGC-1α pathways in offspring skeletal muscle at weaning.
Collapse
|
3
|
Salehi H, Amirpour N, Niapour A, Razavi S. An Overview of Neural Differentiation Potential of Human Adipose Derived Stem Cells. Stem Cell Rev Rep 2016; 12:26-41. [PMID: 26490462 DOI: 10.1007/s12015-015-9631-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is wide interest in application of adult stem cells due to easy to obtain with a minimal patient discomfort, capable of producing cell numbers in large quantities and their immunocompatible properties without restriction by ethical concerns. Among these stem cells, multipotent mesenchymal stem cells (MSCs) from human adipose tissue are considered as an ideal source for various regenerative medicine. In spite of mesodermal origin of human adipose-derived stem cells (hADSCs), these cells have differentiation potential toward mesodermal and non-mesodermal lineages. Up to now, several studies have shown that hADSCs can undergo transdifferentiation and produce cells outside of their lineage, especially into neural cells when they are transferred to a specific cell environment. The purpose of this literature review is to provide an overview of the existing state of knowledge of the differentiation potential of hADSCs, specifically their ability to give rise to neuronal cells. The following review discusses different protocols considered for differentiation of hADSCs to neural cells, the neural markers that are used in each procedure and possible mechanisms that are involved in this differentiation.
Collapse
|
4
|
Paninka RM, Mazzotti DR, Kizys MML, Vidi AC, Rodrigues H, Silva SP, Kunii IS, Furuzawa GK, Arcisio-Miranda M, Dias-da-Silva MR. Whole genome and exome sequencing realignment supports the assignment of KCNJ12, KCNJ17, and KCNJ18 paralogous genes in thyrotoxic periodic paralysis locus: functional characterization of two polymorphic Kir2.6 isoforms. Mol Genet Genomics 2016; 291:1535-44. [PMID: 27008341 DOI: 10.1007/s00438-016-1185-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Next-generation sequencing (NGS) has enriched the understanding of the human genome. However, homologous or repetitive sequences shared among genes frequently produce dubious alignments and can puzzle NGS mutation analysis, especially for paralogous potassium channels. Potassium inward rectifier (Kir) channels are important to establish the resting membrane potential and regulating the muscle excitability. Mutations in Kir channels cause disorders affecting the heart and skeletal muscle, such as arrhythmia and periodic paralysis. Recently, a susceptibility muscle channelopathy-thyrotoxic periodic paralysis (TPP)-has been related to Kir2.6 channel (KCNJ18 gene). Due to their high nucleotide sequence homology, variants found in the potassium channels Kir2.6 and Kir2.5 have been mistakenly attributable to Kir2.2 polymorphisms or mutations. We aimed at elucidating nucleotide misalignments by performing realignment of whole exome sequencing (WES) and whole genome sequencing (WGS) reads to specific Kir2.2, Kir2.5, and Kir2.6 cDNA sequences using BWA-MEM/GATK pipeline. WES/WGS reads correctly aligned 26.9/43.2, 37.6/31.0, and 35.4/25.8 % to Kir2.2, Kir2.5, and Kir2.6, respectively. Realignment was able to reduce over 94 % of misalignments. No putative mutations of Kir2.6 were identified for the three TPP patients included in the cohort of 36 healthy controls using either WES or WGS. We also distinguished sequences for a single Kir2.2, a single Kir2.5 sequence, and two Kir2.6 isoforms, which haplotypes were named RRAI and QHEV, based on changes at 39, 40, 56, and 249 residues. Electrophysiology records on both Kir2.6_RRAI and _QHEV showed typical rectifying currents. In our study, the reduction of misalignments allowed the elucidation of paralogous gene sequences and two distinct Kir2.6 haplotypes, and pointed the need for checking the frequency of these polymorphisms in other populations with different genetic background.
Collapse
Affiliation(s)
- Rolf M Paninka
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 11° andar, São Paulo, SP, 04039-032, Brazil.,Laboratory of Structural and Functional Neurobiology, Department of Biophysics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Diego R Mazzotti
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marina M L Kizys
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 11° andar, São Paulo, SP, 04039-032, Brazil
| | - Angela C Vidi
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 11° andar, São Paulo, SP, 04039-032, Brazil
| | - Hélio Rodrigues
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Silas P Silva
- Laboratory of Integrative Biology and Metabolism, Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ilda S Kunii
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 11° andar, São Paulo, SP, 04039-032, Brazil
| | - Gilberto K Furuzawa
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 11° andar, São Paulo, SP, 04039-032, Brazil
| | - Manoel Arcisio-Miranda
- Laboratory of Structural and Functional Neurobiology, Department of Biophysics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Magnus R Dias-da-Silva
- Laboratory of Molecular and Translational Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669, 11° andar, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
5
|
Delgado-González E, Sánchez-Tusie AA, Morales G, Aceves C, Anguiano B. Triiodothyronine Attenuates Prostate Cancer Progression Mediated by β-Adrenergic Stimulation. Mol Med 2016; 22:1-11. [PMID: 26928389 DOI: 10.2119/molmed.2015.00047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 02/19/2016] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer cells are responsive to adrenergic and thyroid stimuli. It is well established that β-adrenergic activation (protein kinase A [PKA]/cAMP response element binding protein [CREB]) promotes cancer progression, but the role of thyroid hormones is poorly understood. We analyzed the effects of β-adrenergic stimulation (isoproterenol [ISO]) and/or thyroid hormone on neuroendocrine (NE) differentiation and cell invasion, using in vivo (LNCaP tumor) and in vitro models (LNCaP and DU145 human cells). Nude mice were inoculated with LNCaP cells and were treated for 6 wks with ISO (200 μg/d), triiodothyronine (T3, 2.5 μg/d) or both. ISO alone reduced tumor growth but increased tumor expression of cAMP response element (CRE)-dependent genes (real-time polymerase chain reaction, chromogranin A, neuron-specific enolase, survivin, vascular endothelial growth factor [VEGF], urokinase plasmin activator [uPA] and metalloproteinase-9 [MMP-9]) and some proteins related to NE differentiation and/or invasiveness (synaptophysin, VEGF, pCREB). T3 reduced tumor growth and prevented the overexpression of ISO-stimulated factors through a pCREB-independent mechanism. In low invasive LNCaP cells, 50 μmol/L ISO or 100 nmol/L thyroxine (T4) induced the acquisition of NE-like morphology (phase-contrast microscopy), increased VEGF secretion (ELISA) and invasive capacity (Transwell assay), but no synergistic effects were observed after the coadministration of ISO + T4. In contrast, 10 nmol/L T3 alone had no effect, but it prevented the NE-like morphology and invasiveness stimulated by ISO. None of these treatments had any effect on highly invasive DU145 cells. In summary, this study showed that ISO and T4 increase cancer progression, and T3 attenuates ISO-stimulated progression. Further studies are required to determine if changes in the ratio of T4/T3 could be relevant for prostate cancer progression.
Collapse
Affiliation(s)
- Evangelina Delgado-González
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Ana Alicia Sánchez-Tusie
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Giapsy Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Carmen Aceves
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| | - Brenda Anguiano
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, México
| |
Collapse
|
6
|
Miller CN, Yang JY, England E, Yin A, Baile CA, Rayalam S. Isoproterenol Increases Uncoupling, Glycolysis, and Markers of Beiging in Mature 3T3-L1 Adipocytes. PLoS One 2015; 10:e0138344. [PMID: 26390217 PMCID: PMC4577088 DOI: 10.1371/journal.pone.0138344] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/28/2015] [Indexed: 12/22/2022] Open
Abstract
Beta-adrenergic activation stimulates uncoupling protein 1 (UCP1), enhancing metabolic rate. In vitro, most work has studied brown adipocytes, however, few have investigated more established adipocyte lines such as the murine 3T3-L1 line. To assess the effect of beta-adrenergic activation, mature 3T3-L1s were treated for 6 or 48 hours with or without isoproterenol (10 and 100 μM) following standard differentiation supplemented with thyroid hormone (T3; 1 nM). The highest dose of isoproterenol increased lipid content following 48 hours of treatment. This concentration enhanced UCP1 mRNA and protein expression. The increase in UCP1 following 48 hours of isoproterenol increased oxygen consumption rate. Further, coupling efficiency of the electron transport chain was disturbed and an enhancement of glycolytic rate was measured alongside this, indicating an attempt to meet the energy demands of the cell. Lastly, markers of beige adipocytes (protein content of CD137 and gene transcript of CITED1) were also found to be upregulated at 48 hours of isoproterenol treatment. This data indicates that mature 3T3-L1 adipocytes are responsive to isoproterenol and induce UCP1 expression and activity. Further, this finding provides a model for further pharmaceutical and nutraceutical investigation of UCP1 in 3T3-L1s.
Collapse
Affiliation(s)
- Colette N. Miller
- Department of Animal and Dairy Sciences, University of Georgia, Athens, Georgia, United States of America
- Department of Foods and Nutrition, University of Georgia, Athens, Georgia, United States of America
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Emily England
- Neuroscience Division, Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, United States of America
| | - Amelia Yin
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Clifton A. Baile
- Department of Animal and Dairy Sciences, University of Georgia, Athens, Georgia, United States of America
- Department of Foods and Nutrition, University of Georgia, Athens, Georgia, United States of America
| | - Srujana Rayalam
- Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine–GA Campus, Suwanee, Georgia, United States of America
- * E-mail:
| |
Collapse
|
7
|
Alves-Bezerra M, Cosentino-Gomes D, Vieira LP, Rocco-Machado N, Gondim KC, Meyer-Fernandes JR. Identification of uncoupling protein 4 from the blood-sucking insect Rhodnius prolixus and its possible role on protection against oxidative stress. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 50:24-33. [PMID: 24746771 DOI: 10.1016/j.ibmb.2014.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/14/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Uncoupling proteins (UCPs) play a critical role in the control of the mitochondrial membrane potential (ΔΨm) due to their ability to dissipate the proton gradient, which results in the uncoupling of mitochondrial respiration from ATP production. Most reactive oxygen species generation in mitochondria occurs in complex III, due to an increase of semiquinone (Q(-)) half-life. When active, UCPs can account as a potential antioxidant system by decreasing ΔΨm and increasing mitochondrial respiration, thus reducing Q(-) life time. The hematophagous insect Rhodnius prolixus, a vector of Chagas disease, is exposed to a huge increase in oxidative stress after a blood meal because of the hydrolysis of hemoglobin and the release of the cytotoxic heme molecule. Although some protective mechanisms were already described for this insect and other hematophagous arthropods, the putative role of UCP proteins as antioxidants in this context has not been explored. In this report, two genes encoding UCP proteins (RpUcp4 and RpUcp5) were identified in the R. prolixus genome. RpUcp4 is the predominant transcript in most analyzed organs, and both mRNA and protein expression are upregulated (13- and 3-fold increase, respectively) in enterocytes the first day after the blood feeding. The increase in UCP4 expression is coincident with the decrease in hydrogen peroxide (H2O2) generation by midgut cells. Furthermore, in mitochondria isolated from enterocytes, the modulation of UCP activity by palmitic acid and GDP resulted in altered ΔΨm, as well as modulation of H2O2 generation rates. These results indicate that R. prolixus UCP4 may function in an antioxidation mechanism to protect the midgut cells against oxidative damage caused by blood digestion.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela Cosentino-Gomes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lisvane P Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathália Rocco-Machado
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - José R Meyer-Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.
| |
Collapse
|
8
|
Ramsden DB, Ho PW, Ho JW, Liu H, So DH, Tse H, Chan K, Ho S. Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction. Brain Behav 2012; 2:468-78. [PMID: 22950050 PMCID: PMC3432969 DOI: 10.1002/brb3.55] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 01/07/2023] Open
Abstract
Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I-V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen-forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed "mild uncoupling." UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinson's disease are discussed.
Collapse
Affiliation(s)
- David B. Ramsden
- School of Medicine and School of Biosciences, University of Birmingham, United Kingdom
| | - Philip W.‐L. Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone and Healthy Aging (HBHA), University of Hong Kong, Hong Kong, PR China
| | - Jessica W.‐M. Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Hui‐Fang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Danny H.‐F. So
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Ho‐Man Tse
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Koon‐Ho Chan
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone and Healthy Aging (HBHA), University of Hong Kong, Hong Kong, PR China
| | - Shu‐Leong Ho
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong, PR China
- Research Centre of Heart, Brain, Hormone and Healthy Aging (HBHA), University of Hong Kong, Hong Kong, PR China
| |
Collapse
|
9
|
Ji H, Shen X, Zhang Y, Gao F, Huang CY, Chang WW, Lee C, Ke B, Busuttil RW, Kupiec-Weglinski JW. Activation of cyclic adenosine monophosphate-dependent protein kinase a signaling prevents liver ischemia/reperfusion injury in mice. Liver Transpl 2012; 18:659-70. [PMID: 22290937 PMCID: PMC4186257 DOI: 10.1002/lt.23399] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hepatic ischemia/reperfusion injury (IRI) occurs in multiple clinical settings, including liver transplantation. The cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) pathway inhibits hepatocellular apoptosis and regulates toll-like receptor 4-triggered inflammation responses in vitro. Here we examined the function and therapeutic potential of cAMP-PKA activation in a murine (C57/BL6) model of liver warm ischemia (90 minutes) followed by reperfusion. Liver IRI triggered cAMP-PKA activation, whereas the administration of its specific inhibitor, H89, exacerbated hepatocellular damage. Conversely, forskolin therapy, which activates PKA by elevating cAMP levels, protected livers from IRI; this was evidenced by diminished serum alanine aminotransferase levels and well-preserved tissue architecture. Liver protection due to cAMP-PKA stimulation was accompanied by diminished neutrophil and macrophage infiltration/activation, reduced hepatocyte necrosis/apoptosis, and increased cAMP response element-binding protein (CREB) expression and augmented interleukin-10 (IL-10) expression. The neutralization of IL-10 restored liver damage in otherwise ischemia/reperfusion-resistant, forskolin-treated mice. In vitro, cAMP-PKA activation diminished macrophage tumor necrosis factor α, IL-6, and IL-12 in an IL-10-dependent manner and prevented necrosis/apoptosis in primary mouse hepatocyte cultures. Our novel findings in a mouse model of liver IRI document the importance of cAMP-PKA signaling in hepatic homeostasis and cytoprotection in vivo. The activation of cAMP-PKA signaling differentially regulates local inflammation and prevents hepatocyte death, and this provides a rationale for novel therapeutic approaches to combating liver IRI in transplant recipients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jerzy W. Kupiec-Weglinski
- Corresponding Author: Jerzy W. Kupiec-Weglinski, MD, PhD. Dumont-UCLA Transplant Center, 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095. Phone: (310) 825-4196; Fax: (310) 267-2358;
| |
Collapse
|