1
|
Antigenic cooperation among intrahost HCV variants organized into a complex network of cross-immunoreactivity. Proc Natl Acad Sci U S A 2015; 112:6653-8. [PMID: 25941392 DOI: 10.1073/pnas.1422942112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hepatitis C virus (HCV) has the propensity to cause chronic infection. Continuous immune escape has been proposed as a mechanism of intrahost viral evolution contributing to HCV persistence. Although the pronounced genetic diversity of intrahost HCV populations supports this hypothesis, recent observations of long-term persistence of individual HCV variants, negative selection increase, and complex dynamics of viral subpopulations during infection as well as broad cross-immunoreactivity (CR) among variants are inconsistent with the immune-escape hypothesis. Here, we present a mathematical model of intrahost viral population dynamics under the condition of a complex CR network (CRN) of viral variants and examine the contribution of CR to establishing persistent HCV infection. The model suggests a mechanism of viral adaptation by antigenic cooperation (AC), with immune responses against one variant protecting other variants. AC reduces the capacity of the host's immune system to neutralize certain viral variants. CRN structure determines specific roles for each viral variant in host adaptation, with variants eliciting broad-CR antibodies facilitating persistence of other variants immunoreacting with these antibodies. The proposed mechanism is supported by empirical observations of intrahost HCV evolution. Interference with AC is a potential strategy for interruption and prevention of chronic HCV infection.
Collapse
|
2
|
Campo DS, Dimitrova Z, Yokosawa J, Hoang D, Perez NO, Ramachandran S, Khudyakov Y. Hepatitis C virus antigenic convergence. Sci Rep 2012; 2:267. [PMID: 22355779 PMCID: PMC3279735 DOI: 10.1038/srep00267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/20/2012] [Indexed: 12/13/2022] Open
Abstract
Vaccine development against hepatitis C virus (HCV) is hindered by poor understanding of factors defining cross-immunoreactivity among heterogeneous epitopes. Using synthetic peptides and mouse immunization as a model, we conducted a quantitative analysis of cross-immunoreactivity among variants of the HCV hypervariable region 1 (HVR1). Analysis of 26,883 immunological reactions among pairs of peptides showed that the distribution of cross-immunoreactivity among HVR1 variants was skewed, with antibodies against a few variants reacting with all tested peptides. The HVR1 cross-immunoreactivity was accurately modeled based on amino acid sequence alone. The tested peptides were mapped in the HVR1 sequence space, which was visualized as a network of 11,319 sequences. The HVR1 variants with a greater network centrality showed a broader cross-immunoreactivity. The entire sequence space is explored by each HCV genotype and subtype. These findings indicate that HVR1 antigenic diversity is extensively convergent and effectively limited, suggesting significant implications for vaccine development.
Collapse
Affiliation(s)
- David S. Campo
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
| | - Zoya Dimitrova
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
| | - Jonny Yokosawa
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
- Laboratório de Virologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Duc Hoang
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Nestor O. Perez
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
- Probiomed S.A., Tenancingo, Mexico
| | - Sumathi Ramachandran
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
| | - Yury Khudyakov
- Molecular Epidemiology & Bioinformatics Laboratory, Division of Viral Hepatitis, Centers for Disease Control and Prevention, Atlanta, USA, 30329
| |
Collapse
|