1
|
Pal C. Redox modulating small molecules having antimalarial efficacy. Biochem Pharmacol 2023; 218:115927. [PMID: 37992998 DOI: 10.1016/j.bcp.2023.115927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The search for effective antimalarial agents remains a critical priority because malaria is widely spread and drug-resistant strains are becoming more prevalent. In this review, a variety of small molecules capable of modulating redox processes were showcased for their potential as antimalarial agents. The compounds were designed to target the redox balance of Plasmodium parasites, which has a pivotal function in their ability to survive and multiply within the host organism. A thorough screening method was utilized to assess the effectiveness of these compounds against both drug-sensitive and drug-resistant strains of Plasmodium falciparum, the malaria-causing parasite. The results revealed that several of the tested compounds exhibited significant effectiveness against malaria, displaying IC50 values at a low micromolar range. Furthermore, these compounds displayed promising selectivity for the parasite, as they exhibited low cytotoxicity towards mammalian cells. Thorough mechanistic studies were undertaken to clarify how the active compounds exert their mode of action. The findings revealed that these compounds disrupted the parasites' redox balance, causing oxidative stress and interfering with essential cellular functions. Additionally, the compounds showed synergistic effects when combined with existing antimalarial drugs, suggesting their potential for combination therapies to combat drug resistance. Overall, this study highlights the potential of redox-modulating small molecules as effective antimalarial agents. The identified compounds demonstrate promising antimalarial activity, and their mechanism of action offers insights into targeting the redox balance of Plasmodium parasites. Further optimization and preclinical studies are warranted to determine their efficacy, safety, and potential for clinical development as novel antimalarial therapeutics.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
2
|
Saccoliti F, Madia VN, Tudino V, De Leo A, Pescatori L, Messore A, De Vita D, Scipione L, Brun R, Kaiser M, Mäser P, Calvet CM, Jennings GK, Podust LM, Pepe G, Cirilli R, Faggi C, Di Marco A, Battista MR, Summa V, Costi R, Di Santo R. Design, Synthesis, and Biological Evaluation of New 1-(Aryl-1 H-pyrrolyl)(phenyl)methyl-1 H-imidazole Derivatives as Antiprotozoal Agents. J Med Chem 2019; 62:1330-1347. [PMID: 30615444 DOI: 10.1021/acs.jmedchem.8b01464] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have designed and synthesized a series of new imidazole-based compounds structurally related to an antiprotozoal agent with nanomolar activity which we identified recently. The new analogues possess micromolar activities against Trypanosoma brucei rhodesiense and Leishmania donovani and nanomolar potency against Plasmodium falciparum. Most of the analogues displayed IC50 within the low nanomolar range against Trypanosoma cruzi, with very high selectivity toward the parasite. Discussion of structure-activity relationships and in vitro biological data for the new compounds are provided against a number of different protozoa. The mechanism of action for the most potent derivatives (5i, 6a-c, and 8b) was assessed by a target-based assay using recombinant T. cruzi CYP51. Bioavailability and efficacy of selected hits were assessed in a T. cruzi mouse model, where 6a and 6b reduced parasitemia in animals >99% following intraperitoneal administration of 25 mg/kg/day dose for 4 consecutive days.
Collapse
Affiliation(s)
- Francesco Saccoliti
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Valentina Noemi Madia
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Valeria Tudino
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Alessandro De Leo
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Luca Pescatori
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Antonella Messore
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Daniela De Vita
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Luigi Scipione
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Reto Brun
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , CH-4002 Basel , Switzerland
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , CH-4002 Basel , Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute , Socinstrasse 57 , CH-4002 Basel , Switzerland
| | - Claudia M Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California San Diego , La Jolla , California 92093 , United States.,Laboratório de Ultraestrutura Celular , Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro , Rio de Janeiro 21040-360 , Brazil
| | - Gareth K Jennings
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California San Diego , La Jolla , California 92093 , United States
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California San Diego , La Jolla , California 92093 , United States
| | - Giacomo Pepe
- Dipartimento di Farmacia , Università di Salerno , Via Giovanni Paolo II 132 , I-84084 Fisciano , Salerno , Italy
| | - Roberto Cirilli
- Centro Nazionale per il Controllo e la Valutazione dei Farmaci , Istituto Superiore di Sanita , Viale Regina Elena 299 , I-00161 Rome , Italy
| | - Cristina Faggi
- Dipartimento di Chimica , Università degli studi di Firenze , Via della Lastruccia 13 , I-50019 , Sesto Fiorentino , Florence , Italy
| | - Annalise Di Marco
- Drug Discovery , IRBM Science Park , Via Pontina km 30,600 , Pomezia, Rome 00071 , Italy
| | - Maria Rosaria Battista
- Drug Discovery , IRBM Science Park , Via Pontina km 30,600 , Pomezia, Rome 00071 , Italy
| | - Vincenzo Summa
- Drug Discovery , IRBM Science Park , Via Pontina km 30,600 , Pomezia, Rome 00071 , Italy
| | - Roberta Costi
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| | - Roberto Di Santo
- Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma , p. le Aldo Moro 5 , I-00185 Rome , Italy
| |
Collapse
|
3
|
Saccoliti F, Madia VN, Tudino V, De Leo A, Pescatori L, Messore A, De Vita D, Scipione L, Brun R, Kaiser M, Mäser P, Calvet CM, Jennings GK, Podust LM, Costi R, Di Santo R. Biological evaluation and structure-activity relationships of imidazole-based compounds as antiprotozoal agents. Eur J Med Chem 2018; 156:53-60. [PMID: 30006174 DOI: 10.1016/j.ejmech.2018.06.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 11/19/2022]
Abstract
We discovered a series of azole antifungal compounds as effective antiprotozoal agents. They displayed promising inhibitory activities within the micromolar-submicromolar range against P. falciparum, L. donovani, and T. b. rhodesiense. Moreover, most of such compounds showed excellent nanomolar IC50 against T. cruzi, showing also very low cytotoxicity. Discussion of structure-activity relationships and biological data for these compounds are provided against the different parasites. To assess the mechanism of action against T. cruzi we proved that the most potent compounds (3b, 3j-l) inhibited the T. cruzi CYP51. Moreover, the most active derivative 3j dramatically reduced parasitemia in T. cruzi mouse model without acute toxicity.
Collapse
Affiliation(s)
- Francesco Saccoliti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Valentina Noemi Madia
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Valeria Tudino
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Alessandro De Leo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Luca Pescatori
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Antonella Messore
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Daniela De Vita
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Luigi Scipione
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Reto Brun
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002, Basel, Switzerland.
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002, Basel, Switzerland.
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002, Basel, Switzerland.
| | - Claudia Magalhaes Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA; Laboratório de Ultraestrutura Celular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, 21040-360, Brazil.
| | - Gareth K Jennings
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Larissa M Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Roberta Costi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| | - Roberto Di Santo
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, p.le Aldo Moro 5, I-00185, Rome, Italy.
| |
Collapse
|
4
|
Rodrigues Henriques JR, Gamboa de Domínguez N. Modulation of the oxidative stress in malaria infection by clotrimazole. BRAZ J PHARM SCI 2012. [DOI: 10.1590/s1984-82502012000300019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Antimycotic clotrimazole (CTZ) has demonstrated remarkable activity against Plasmodium falciparum in vitro and in vivo. Hemoglobin degradation by Plasmodium parasites makes amino acids available for protein synthesis, inducing oxidative stress in infected cells and producing free heme. These events represent biochemical targets for potential antimalarials. In this study, we have tested the ability of CTZ to modify the oxidative status in Plasmodium berghei-infected erythrocytes. After hemolysis, activities of superoxide dismutase (SOD), catalase (CAT), glutathione cycle and NADPH+H+-producing dehydrogenases were investigated using UV-visible spectrophotometry. Thiobarbituric acid reactive substances (TBARS) were evaluated as a marker of lipid damage. Results showed that CTZ significantly decreased the overall activity of 6-phosphagluconate dehydrogenase (6PGD) compared to infected and non-treated cells; consequently, the glutathione cycle was inhibited, leaving the parasite vulnerable to the oxidative stress originating from hemoglobin degradation. As a compensatory response, CTZ prevented some loss of SOD and CAT activities in infected cells. The infection triggered lipid peroxidation in erythrocytes, which was decreased by CTZ. These results suggest the presence of a redox unbalance in cells treated with CTZ, discussing a possible effect of this compound disturbing the oxidative status in a Plasmodium berghei-infection.
Collapse
|
5
|
Abstract
SIGNIFICANCE Parasitic diseases affect hundreds of millions of people worldwide and represent major health problems. Treatment is becoming extremely difficult due to the emergence of drug resistance, the absence of effective vaccines, and the spread of insecticide-resistant vectors. Thus, identification of affordable and readily available drugs against resistant parasites is of global demand. RECENT ADVANCES Susceptibility of many parasites to oxidative stress is a well-known phenomenon. Therefore, generation of reactive oxygen species (ROS) or inhibition of endogenous antioxidant enzymes would be a novel therapeutic approach to develop antiparasitic drugs. This article highlights the unique metabolic pathways along with redox enzymes of unicellular (Plasmodium falciparum, Trypanosoma cruzi, Trypanosoma brucei, Leishmania donovani, Entamoeba histolytica, and Trichomonas vaginalis) and multicellular parasites (Schistosoma mansoni), which could be utilized to promote ROS-mediated toxicity. CRITICAL ISSUES Enzymes involved in various vital redox reactions could be potential targets for drug development. FUTURE DIRECTIONS The identification of redox-active antiparasitic drugs along with their mode of action will help researchers around the world in designing novel drugs in the future.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Kolkata, India
| | | |
Collapse
|