1
|
Kanegae H, de Souza Suguiura IM, Tashiro R, Konno T, Hou DX, Sano A, Eto T, Ueda K, Hossain MA. Re-Evaluation of the Cross-Reactions of the Antibody against the Causative Agent for Paracoccidioidomycosis Ceti; Paracoccidioides ceti and the Related Fungal Species. Microorganisms 2023; 11:2428. [PMID: 37894086 PMCID: PMC10609003 DOI: 10.3390/microorganisms11102428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 10/29/2023] Open
Abstract
Paracoccidioidomycosis ceti (PCM-C) is a chronic granulomatous keloidal dermatitis in cetaceans that has been reported worldwide and is caused by Paracoccidioides ceti. Serological cross-reactions among highly pathogenic fungal infections and related diseases have been reported. However, the true cross-reaction of antibodies against P. ceti has remained unknown due to the use of positive control sera from infected dolphins. This study aimed to re-evaluate antibodies from mechanically dislodged fungal cells in the infected tissue of a PCM-C case and demonstrate the actual cross-reaction. The results revealed a limited cross-reaction between PCM-C and paracoccidioidomycosis, while the antibodies did not react with other pathogens such as Coccidioides posadasii, Histoplasama capsulatum, and Arthrographis kalrae. Thus, the method for evaluation of the antibody against PCM-C is reliable, and there is potential for epidemiological study.
Collapse
Affiliation(s)
- Hikaru Kanegae
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (H.K.)
| | - Igor Massahiro de Souza Suguiura
- Department of Pathological Sciences, State University of Londrina, P.O. Box 10011, Londrina 86057-970, PR, Brazil
- Paraná State Secretariat of Health, Department of Health Surveillance, 17th Health Region, Alameda Miguel Blasi, 76-Centro, Londrina 86010-070, PR, Brazil
| | - Rentaro Tashiro
- Graduate School of Agriculture, University of the Ryukyus, Sembaru 1, Nishihara-Cho, Nakagami-Gun 903-0213, Japan
| | - Toshihiro Konno
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (H.K.)
- Graduate School of Agriculture, University of the Ryukyus, Sembaru 1, Nishihara-Cho, Nakagami-Gun 903-0213, Japan
- Faculty of Agriculture, University of the Ryukyus, Sembaru 1, Nishihara-Cho, Nakagami-Gun 903-0213, Japan;
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (H.K.)
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ayako Sano
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (H.K.)
- Graduate School of Agriculture, University of the Ryukyus, Sembaru 1, Nishihara-Cho, Nakagami-Gun 903-0213, Japan
- Faculty of Agriculture, University of the Ryukyus, Sembaru 1, Nishihara-Cho, Nakagami-Gun 903-0213, Japan;
| | - Takeshi Eto
- Faculty of Agriculture, University of the Ryukyus, Sembaru 1, Nishihara-Cho, Nakagami-Gun 903-0213, Japan;
| | - Keiichi Ueda
- Okinawa Churashima Foundation, Aza Ishikawa 888, Motobu-Cho, Kunigami-Gun 905-0206, Japan
| | - Md. Amzad Hossain
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (H.K.)
- Graduate School of Agriculture, University of the Ryukyus, Sembaru 1, Nishihara-Cho, Nakagami-Gun 903-0213, Japan
- Faculty of Agriculture, University of the Ryukyus, Sembaru 1, Nishihara-Cho, Nakagami-Gun 903-0213, Japan;
| |
Collapse
|
2
|
Shumoto G, Nagashima LA, Itano EN, Minakawa T, Ueda K, Sano A. Immunohistochemical Cross-Reactivity Between Arthrographis kalrae and Highly Pathogenic Coccidioides posadasii, Histoplasma capsulatum, and Paracoccidioides Fungal Species. Mycopathologia 2019; 184:393-402. [DOI: 10.1007/s11046-019-00348-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/05/2019] [Indexed: 11/25/2022]
|
3
|
Mittal J, Ponce MG, Gendlina I, Nosanchuk JD. Histoplasma Capsulatum: Mechanisms for Pathogenesis. Curr Top Microbiol Immunol 2019; 422:157-191. [PMID: 30043340 PMCID: PMC7212190 DOI: 10.1007/82_2018_114] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Histoplasmosis, caused by the dimorphic environmental fungus Histoplasma capsulatum, is a major mycosis on the global stage. Acquisition of the fungus by mammalian hosts can be clinically silent or it can lead to life-threatening systemic disease, which can occur in immunologically intact or deficient hosts, albeit severe disease is more likely in the setting of compromised cellular immunity. H. capsulatum yeast cells are highly adapted to the mammalian host as they can effectively survive within intracellular niches in select phagocytic cells. Understanding the biological response by both the host and H. capsulatum will facilitate improved approaches to prevent and/or modify disease. This review presents our current understanding of the major pathogenic mechanisms involved in histoplasmosis.
Collapse
Affiliation(s)
- Jamie Mittal
- Department of Medicine (Infectious Diseases), Montefiore Medical Center, Bronx, NY, USA
| | - Maria G Ponce
- Department of Medicine (Infectious Diseases), Montefiore Medical Center, Bronx, NY, USA
| | - Inessa Gendlina
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joshua D Nosanchuk
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
5
|
Pereira PAT, Assis PA, Prado MKB, Ramos SG, Aronoff DM, de Paula-Silva FWG, Sorgi CA, Faccioli LH. Prostaglandins D 2 and E 2 have opposite effects on alveolar macrophages infected with Histoplasma capsulatum. J Lipid Res 2017; 59:195-206. [PMID: 29217623 DOI: 10.1194/jlr.m078162] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/05/2017] [Indexed: 01/05/2023] Open
Abstract
Prostaglandin E2 (PGE2) suppresses macrophage effector mechanisms; however, little is known about the function of PGD2 in infected alveolar macrophages (AMs). Using serum-opsonized Histoplasma capsulatum (Ops-H. capsulatum) in vitro, we demonstrated that AMs produced PGE2 and PGD2 in a time-dependent manner, with PGE2 levels exceeding those of PGD2 by 48 h postinfection. Comparison of the effects of both exogenous PGs on AMs revealed that PGD2 increased phagocytosis and killing through the chemoattractant receptor-homologous molecule expressed on Th2 lymphocytes receptor, whereas PGE2 had opposite effects, through E prostanoid (EP) receptor 2 (EP2)/EP4-dependent mechanisms. Moreover, PGD2 inhibited phospholipase C-γ (PLC-γ) phosphorylation, reduced IL-10 production, and increased leukotriene B4 receptor expression. In contrast, exogenous PGE2 treatment reduced PLC-γ phosphorylation, p38 and nuclear factor κB activation, TNF-α, H2O2, and leukotriene B4, but increased IL-1β production. Using specific compounds to inhibit the synthesis of each PG in vitro and in vivo, we found that endogenous PGD2 contributed to fungicidal mechanisms and controlled inflammation, whereas endogenous PGE2 decreased phagocytosis and killing of the fungus and induced inflammation. These findings demonstrate that, although PGD2 acts as an immunostimulatory mediator to control H. capsulatum infection, PGE2 has immunosuppressive effects, and the balance between these two PGs may limit collateral immune damage at the expense of microbial containment.
Collapse
Affiliation(s)
- Priscilla A T Pereira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Patrícia A Assis
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Morgana K B Prado
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Simone G Ramos
- Departamento de Patologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - David M Aronoff
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Francisco W G de Paula-Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Carlos A Sorgi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil
| | - Lúcia H Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto Universidade de São Paulo, 14040-903 Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Sahaza JH, Pérez-Torres A, Zenteno E, Taylor ML. Usefulness of the murine model to study the immune response against Histoplasma capsulatum infection. Comp Immunol Microbiol Infect Dis 2014; 37:143-52. [PMID: 24766724 DOI: 10.1016/j.cimid.2014.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 12/19/2022]
Abstract
The present paper is an overview of the primary events that are associated with the histoplasmosis immune response in the murine model. Valuable data that have been recorded in the scientific literature have contributed to an improved understanding of the clinical course of this systemic mycosis, which is caused by the dimorphic fungus Histoplasma capsulatum. Data must be analyzed carefully, given that misinterpretation could be generated because most of the available information is based on experimental host-parasite interactions that used inappropriate proceedings, i.e., the non-natural route of infection with the parasitic and virulent fungal yeast-phase, which is not the usual infective phase of the etiological agent of this mycosis. Thus, due to their versatility, complexity, and similarities with humans, several murine models have played a fundamental role in exploring the host-parasite interaction during H. capsulatum infection.
Collapse
Affiliation(s)
- Jorge H Sahaza
- Laboratorio de Inmunología de Hongos, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México, DF 04510, Mexico; Unidad de Micología Médica y Experimental, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Armando Pérez-Torres
- Laboratorio de Filogenia del Sistema Inmune de Piel y Mucosas, Departamento de Biología Celular y Tisular, Facultad de Medicina, UNAM, México, DF 04510, Mexico
| | - Edgar Zenteno
- Laboratorio de Inmunología, Departamento de Bioquímica, Facultad de Medicina, UNAM, México, DF 04510, Mexico
| | - Maria Lucia Taylor
- Laboratorio de Inmunología de Hongos, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), México, DF 04510, Mexico.
| |
Collapse
|