1
|
Oyarzún-Ruiz P, Navarro MA, Moreno L, Landaeta-Aqueveque C. Pathological lesions associated with avian schistosomes (Digenea: Schistosomatidae) in the freshwater snail Chilina dombeiana (Gastropoda: Chilinidae) from Southern Chile. J Invertebr Pathol 2024; 205:108145. [PMID: 38821315 DOI: 10.1016/j.jip.2024.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Avian schistosomes inhabit the blood stream of domestic and wild birds with aquatic snails as their intermediate hosts. In the Neotropics there is an emerging effort to describe species from these hosts, including Chile, although the knowledge about their pathological consequences is mostly understudied. This study aimed to describe the pathological changes associated with the parasitism of a native schistosomatid restricted to the Southern Cone of Neotropics. To achieve this, a total of 401 Chilina dombeiana snails (Chilinidae) were collected in two locations from Southern Chile. All of them were disposed to cercarial release procedure for three consecutive days. Furcocercariae released were stained and characterized by microscopic evaluation. Then, all snails were dissected under stereomicroscope and preserved in 10 % buffered formalin until histopathological analysis was performed. Eight out 401 (P = 2 %) snails were found parasitized with avian schistosomes. The released furcocercariae were identified as Schistosomatidae gen. sp. Lineage II which was previously reported in the same host. The main pathological change was an atrophy of ovotestes and an absence or mild infiltration of hemocytes in the surrounding tissues. Besides, a co-infection with echinostomes was found which was associated with a moderate hemocyte infiltration, granuloma-like lesion, and a reduced presence of schistosome' sporocysts. The latter would suggest an antagonistic interaction between these two digeneans, as has been proposed in the Echinostoma spp.-Schistosoma mansoni model. Despite the above, the release of furcocercariae was present but reduced, in contrast with the non-release of echinocercariae. This interaction requires further attention. This study represents the first attempt to characterize the pathological consequences of parasitism by a native, yet undescribed, avian schistosome in an endemic snail. Future studies should consider experimental infections to understand the dynamics of single infections in other Chilina species, including inter- and intra-specific parasitism as previous studies have found, including this study.
Collapse
Affiliation(s)
- Pablo Oyarzún-Ruiz
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, Chile.
| | - Mauricio A Navarro
- Instituto de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Lucila Moreno
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile
| | - Carlos Landaeta-Aqueveque
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán 3780000, Chile
| |
Collapse
|
2
|
Mansour SM, Taha RG, Youssef AA. Assessment of Amphora coffeaeformis and Scenedesmus dimorphus algae as immunostimulant agents on Biomphlaria alexandrina snails against Schistosoma mansoni. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01262-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractSchistosoma mansoni is the main factor of human schistosomiasis which is responsible for high rates of mortality. Recently, the use of alternative biological control agents has gained importance in disease control because the intensive use of molluscicides is very harmful to human health and poses risks to the environment. In the present work, the potential effect of two freshwater algae, Amphora coffeaeformis and Scenedesmus obtusus, on the immune response of Biomphalaria alexandrina snails against infection with S. mansoni was investigated. Two different concentrations 1 and 2 g L− 1 from each dried algal material were tested on snails before exposure to miracidial infection by one day. The use of Amphora coffeaeformis has a greater immunostimulatory effect than Scendesmus obtusus at a low concentration of 1.0 g L− 1. The tested algae affected the snail’s hemocytes and its immune response to S. mansoni as evidenced by a significant decrease in infection rate and cercariae production. In addition, increasing in total hemocyte count, the formation of vacuoles, the appearance of several pseudopodia, and the formation of coarse granules in hemocytes of infected snails treated with A. coffeaeformis. Intense tissue reactions were also observed. In conclusion, it was confirmed that these algae can be used as an immunostimulant in the prevention and control of S. mansoni.
Collapse
|
3
|
Effect of methyl gallate on immune response of Biomphalaria alexandrina (Ehrenberg, 1831) snails to infection with Schistosoma mansoni (Sambon, 1907). Parasitol Res 2021; 120:1011-1023. [PMID: 33409634 DOI: 10.1007/s00436-020-07037-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/22/2020] [Indexed: 10/22/2022]
Abstract
Schistosomiasis still affects a lot of people in many developing countries. Reducing the disease dissemination has been the target of various studies. As methyl gallate has antioxidant properties, it is assumed that it can be a good candidate for stimulating the immune response of snails. So, the aim of this work is to investigate the potential of using methyl gallate as an immunostimulant to Biomphalaria alexandrina snails in order to prevent the development of invading miracidia into infective cercariae. The infected snails were exposed to three concentrations of methyl gallate for two periods: 24 and 72 h. The results indicated that the most effective concentration was the lowest one: 125 mg/L of methyl gallate for 72 h, as it reduced both infection rate and mean number of shed cercariae. Also, it increased the total number of snails' hemocytes in hemolymph, which were observed in head-foot region and digestive gland of treated snails surrounding degenerated sporocysts and cercariae. In addition, hydrogen peroxide showed its highest content in tissues of snails exposed to 125 mg/L of methyl gallate for 72 h. In conclusion, methyl gallate can be considered as one of the most promising immunostimulants of B. alexandrina snails against infection with Schistosoma mansoni.
Collapse
|
4
|
Fernández MV, Hamann MI, de Núñez MO. New larval trematodes in Biomphalaria species (Planorbidae) from Northeastern Argentina. Acta Parasitol 2016; 61:471-92. [PMID: 27447210 DOI: 10.1515/ap-2016-0064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 02/19/2016] [Indexed: 11/15/2022]
Abstract
Larval trematodes infecting Biomphalaria tenagophila and B. occidentalis were surveyed in a suburban and semipermanent pond of Corrientes province, Northeastern Argentina. A total of 1,409 snails were examined between spring 2011 to winter 2013, and 8 different larval trematodes were studied morphologically. Three of these species-Echinocercaria sp. IV, Ribeiroia sp. and Echinocercaria sp. XIV-have been previously found in Corrientes province. Six other trematodes belonging to Strigeidae (Furcocercaria sp. III), Clinostomidae (Cercaria Clinostomidae sp.), Spirorchiidae (Cercaria Spirorchiidae sp.) and Echinostomatidae (Echinocercaria sp. 1, Echinocercaria sp. 2, Echinocercaria sp. 3) are new species parasitizing Biomphalaria snails. Cercaria Spirorchiidae sp. is the third larval trematode related to Spirorchiidae recorded in South America and the first one for Argentina. Cercaria Clinostomidae sp. is the first one related to Clinostomidae in northeastern Argentina. The prevalence of larval trematodes infecting B. tenagophila and B. occidentalis in the environment studied was low (<5%) with the echinostome group better represented in terms of prevalence and species richness. Drought periods could affect the dynamics of parasitic transmission due to the absence of trematodes in the autumn and winter of the first seasonal cycle. However, in humid periods parasite transmission can occur throughout the year due to the presence of larvae in all seasons of the second seasonal cycle, although the less-warm seasons showed higher prevalence than the summer period probably related to the subtropical climate of Corrientes province.
Collapse
|
5
|
Fernández MV, Hamann MI, Núñez MOD. Echinostome cercariae from Biomphalaria straminea (Mollusca: Planorbidae) in a ricefield from northeastern Argentina. REV MEX BIODIVERS 2014. [DOI: 10.7550/rmb.43875] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Marques DPDA, Rosa FM, Maciel E, Negrão-Corrêa D, Teles HMS, Caldeira RL, Jannotti-Passos LK, Coelho PMZ. Reduced susceptibility of a Biomphalaria tenagophila population to Schistosoma mansoni after introducing the resistant Taim/RS strain of B. tenagophila into Herivelton Martins stream. PLoS One 2014; 9:e99573. [PMID: 24941324 PMCID: PMC4062407 DOI: 10.1371/journal.pone.0099573] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/15/2014] [Indexed: 11/19/2022] Open
Abstract
Studies performed in the last 30 years demonstrated that a strain of B. tenagophila from the Taim Biological Reserve is completely resistant to Schistosoma mansoni infection. This resistance to parasite infection is a dominant characteristic during crossbreeding with susceptible B. tenagophila strains. These experiments also identified a 350 bp molecular marker that is exclusive to the Taim strain and does not occur in other geographic strains of this snail species. The Taim strain (Taim/RS) of Biomphalaria tenagophila was bred on a large scale, physically marked and introduced into a stream in which previous malacological analyses had revealed the presence of only parasite-susceptible B. tenagophila. Samples of offspring captured 4, 11 and 14 months after the introduction of the Taim strain were examined, and the susceptibility of the snails to S. mansoni infection dropped from 38.6-26.5% to 2.1% during the 14 months after the introduction of the Taim snail strain. A significant correlation was also observed between the absence of infection and the identification of the Taim molecular marker. These results demonstrate that the genetic marker from the Taim strain was successfully introduced into the wild snail population. In addition, a significant relationship exists between the marker and resistance to infection.
Collapse
Affiliation(s)
| | - Florence Mara Rosa
- Laboratory of Parasitology, Institute of Biological Sciences, Federal University of Juiz de Fora, São Pedro, Minas Gerais, Brazil
| | | | - Deborah Negrão-Corrêa
- Laboratory of Schistosomiasis, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Roberta Lima Caldeira
- Laboratory of Helminthology and Medical Malacology, Research Center René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Paulo Marcos Zech Coelho
- Laboratory of Schistosomiasis, Research Center René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
7
|
Rohr RA, Amato SB. Hemócitos de Bradybaena similaris e Megalobulimus abbreviatus (Gastropoda, Stylommatophora). IHERINGIA. SERIE ZOOLOGIA 2014. [DOI: 10.1590/1678-476620141042209215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Os hemócitos atuam no sistema de defesa contra organismos invasores e partículas estranhas, auxiliando o reconhecimento do que é próprio do corpo dos grastrópodes e o que não é. São escassas as informações e estudos sobre os hemócitos em espécies de moluscos saudáveis (sem infecções), principalmente em Bradybaena similaris (Fèrussac, 1821) and Megalobulimus abbreviatus (Bequaert, 1948). Portanto, este trabalho tem como objetivos a caracterização e quantificação dos hemócitos presentes na hemolinfa destas duas espécies. Neste trabalho, foram identificados três tipos celulares na hemolinfa de ambas espécies: as células redondas, hialinócitos e granulócitos. Os três tipos de hemócitos foram medidos e foi calculada a média do diâmetro total e do núcleo para cada um deles. Para B. similaris, o diâmetro médio das células redondas foi de 10,7 µm, dos hialinócitos foi de 20 µm e dos granulócitos de 25,4 µm. Para M. abbreviatus, o diâmetro médio foi de 11,7 µm para as células redondas, de 21,5 µm para os hialinócitos e de 30,5 µm para os granulócitos. Embora os hialinócitos possuam médias parecidas entre B. similaris e M. abbreviatus, foram detectadas diferenças significativas do diâmetro celular total e diâmetro do núcleo (p<0,0001) dessas células entre as espécies estudadas. A densidade média de células por ml, sem distinção de tipo celular foi de 197.813 células/ml para M. abbreviatus, e de 416.333 células/ml para B. similaris. Diferentemente de outros gastrópodes, os hemócitos mais frequentes em M. abbreviatus e em B. similaris foram os hialinócitos.
Collapse
|
8
|
Rosa FM, Marques DPA, Maciel E, Couto JM, Negrão-Corrêa DA, Teles HMS, Santos JBD, Coelho PMZ. Breeding of Biomphalaria tenagophila in mass scale. Rev Inst Med Trop Sao Paulo 2013; 55:39-44. [PMID: 23328724 DOI: 10.1590/s0036-46652013000100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/18/2012] [Indexed: 11/21/2022] Open
Abstract
An efficient method for breeding Biomphalaria tenagophila (Taim lineage/RS) was developed over a 5-year-period (2005-2010). Special facilities were provided which consisted of four cement tanks (9.4 x 0.6 x 0.22 m), with their bottom covered with a layer of sterilized red earth and calcium carbonate. Standard measures were adopted, as follows: each tank should contain an average of 3000 specimens, and would be provided with a daily ration of 35,000 mg complemented with lettuce. A green-house effect heating system was developed which constituted of movable dark canvas covers, which allowed the temperature to be controlled between 20 - 24 ºC. This system was essential, especially during the coldest months of the year. Approximately 27,000 specimens with a diameter of 12 mm or more were produced during a 14-month-period. The mortality rates of the newly-hatched and adult snails were 77% and 37%, respectively. The follow-up of the development system related to 310 specimens of B. tenagophila demonstrated that 70-day-old snails reached an average of 17.0 ± 0.9 mm diameter. The mortality rates and the development performance of B. tenagophila snails can be considered as highly satisfactory, when compared with other results in literature related to works carried out with different species of the genus Biomphalaria, under controlled laboratory conditions.
Collapse
Affiliation(s)
- Florence Mara Rosa
- Laboratorio de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, MG, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nacif-Pimenta R, de Mattos ACA, Orfanó ADS, Barbosa L, Pimenta PFP, Coelho PMZ. Schistosoma mansoni in susceptible and resistant snail strains Biomphalaria tenagophila: in vivo tissue response and in vitro hemocyte interactions. PLoS One 2012; 7:e45637. [PMID: 23049828 PMCID: PMC3458097 DOI: 10.1371/journal.pone.0045637] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022] Open
Abstract
Schistosomiasis is a parasitic disease that is highly prevalent, especially in developing countries. Biomphalaria tenagophila is an important invertebrate host of Schistosoma mansoni in Brazil, with some strains (e.g. Cabo Frio) being highly susceptible to the parasite, whereas others (e.g. Taim) are completely resistant to infection. Therefore, B. tenagophila is an important research model for studying immune defense mechanisms against S. mansoni. The internal defense system (IDS) of the snail comprises hemocytes and hemolymph factors acting together to recognize self from non-self molecular patterns to eliminate the threat of infection. We performed experiments to understand the cellular defenses related to the resistance and/or susceptibility of B. tenagophila to S. mansoni. During the early stages of infection, fibrous host cells of both snail strains were arranged as a thin layer surrounding the sporocysts. However, at later stages of infection, the cellular reactions in resistant snails were increasingly more intense, with thicker layers surrounding the parasites, in contrast to susceptible strains. All parasites were damaged or destroyed inside resistant snails after 10 h of infection. By contrast, parasites inside susceptible snails appeared to be morphologically healthy. We also performed experiments using isolated hemocytes from the two strains interacting with sporocysts. Hemocyte attachment started as early as 1 h after initial infection in both strains, but the killing of sporocysts was exclusive to hemocytes from the resistant strain and was time course dependent. The resistant strain was able to kill all sporocysts. In conclusion, our study revealed important aspects of the initial process of infection related to immune defense responses of strains of B. tenagophila that were resistant to S. mansoni compared with strains that were susceptible. Such information is relevant for the survival or death of the parasites and so is important in the development of control measures against this parasite.
Collapse
Affiliation(s)
- Rafael Nacif-Pimenta
- Laboratório de Entomologia Médica, Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, Brasil
| | | | | | - Luciene Barbosa
- Laboratório de Entomologia e Parasitologia Tropical - Universidade Federal de Sergipe, Aracajú, Brasil
| | | | - Paulo Marcos Zech Coelho
- Laboratório de Esquistossomose, Centro de Pesquisas René Rachou-Fiocruz, Belo Horizonte, Brasil
- * E-mail:
| |
Collapse
|
10
|
Morley NJ. The effects of radioactive pollution on the dynamics of infectious diseases in wildlife. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2012; 106:81-97. [PMID: 22265006 DOI: 10.1016/j.jenvrad.2011.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 12/10/2011] [Accepted: 12/19/2011] [Indexed: 05/31/2023]
Abstract
The interactions between infectious diseases and chemical pollution are well known and recognised as important factors in regulating the way wild animals respond to contaminant exposure. However, the impact of ionising radiation and radionuclides has often been overlooked when assessing host-pathogen interactions in polluted habitats, despite often occurring together with chemical contamination. Nevertheless, a comprehensive body of literature exists from laboratory and field studies on host-pathogen relationships under radiation exposure, and with a renewed interest in radioecology developing; an evaluation of infectious disease dynamics under these conditions would be timely. The present study assesses the impact of external ionising radiation and radionuclides on animal hosts and pathogens (viruses, bacteria, protozoans, helminths, arthropods) in laboratory studies and collates the data from field studies, including the large number of investigations undertaken after the Chernobyl accident. It is apparent that radiation exposure has substantial effects on host-pathogen relationships. Although damage to the host immune system is a major factor other variables, such as damage to host tissue barriers and inhibition of pathogen viability are also important in affecting the prevalence and intensity of parasitic diseases. Field studies indicate that the occurrence of host-pathogen associations in radioactively contaminated sites is complex with a variety of biotic and abiotic factors influencing both pathogen and host(s), resulting in changes to the dynamics of infectious diseases.
Collapse
Affiliation(s)
- N J Morley
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
11
|
Mattos ACAD, Martins-Souza RL, Kusel JR, Coelho PMZ. Interaction between primary and secondary sporocysts of Schistosoma mansoni and the internal defence system of Biomphalaria resistant and susceptible to the parasite. Mem Inst Oswaldo Cruz 2012; 106:424-32. [PMID: 21739029 DOI: 10.1590/s0074-02762011000400007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/16/2011] [Indexed: 12/11/2022] Open
Abstract
The outcome of the interaction between Biomphalaria and Schistosoma mansoni depends on the response of the host internal defence system (IDS) and the escape mechanisms of the parasite. The aim of this study was to evaluate the responsiveness of the IDS (haemocytes and soluble haemolymph factors) of resistant and susceptible Biomphalaria tenagophila lineages and Biomphalaria glabrata lineages in the presence of in vitro-transformed primary sporocysts and secondary sporocysts obtained from infected B. glabrata. To do this, we assayed the cellular adhesion index (CAI), analysed viability/mortality, used fluorescent markers to evaluate the tegumental damage and transplanted secondary sporocysts. B. tenagophila Taim was more effective against primary and secondary sporocystes than the susceptible lineage and B. glabrata. Compared with secondary sporocysts exposed to B. tenagophila, primary sporocysts showed a higher CAI, a greater percentage of dead sporocysts and were labelled by lectin from Glycine max and Alexa-Fluor 488 fluorescent probes at a higher rate than the secondary sporocysts. However, the two B. tenagophila lineages showed no cercarial shedding after inoculation with secondary sporocysts. Our hypothesis that secondary sporocysts can escape the B. tenagophila IDS cannot be confirmed by the transplantation experiments. These data suggest that there are additional mechanisms involved in the lower susceptibilty of B. tenagophila to S. mansoni infection.
Collapse
|
12
|
Edwards A, Gladstone M, Yoon P, Raben D, Frederick B, Su TT. Combinatorial effect of maytansinol and radiation in Drosophila and human cancer cells. Dis Model Mech 2011; 4:496-503. [PMID: 21504911 PMCID: PMC3124055 DOI: 10.1242/dmm.006486] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Combination therapy, in which two or more agents are applied, is more effective than single therapies for combating cancer. For this reason, combinations of chemotherapy with radiation are being explored in clinical trials, albeit with an empirical approach. We developed a screen to identify, from the onset, molecules that act in vivo in conjunction with radiation, using Drosophila as a model. Screens through two small molecule libraries from the NCI Developmental Therapeutics Program yielded microtubule poisons; this class of agents is known to enhance the effect of radiation in mammalian cancer models. Here we report an analysis of one microtubule depolymerizing agent, maytansinol isobutyrate (NSC292222; maytansinol), in Drosophila and in human cancer cells. We find that the effect of maytansinol is p53 dependent in Drosophila cells and human cancer cells, that maytansinol enhances the effect of radiation in both systems, and that the combinatorial effect of drug and radiation is additive. We also uncover a differential sensitivity to maytansinol between Drosophila cells and Drosophila larvae, which illustrates the value of studying cell behavior in the context of a whole organism. On the basis of these results, we propose that Drosophila might be a useful model for unbiased screens through new molecule libraries to find cancer drugs for combination therapy.
Collapse
Affiliation(s)
- Anthony Edwards
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | | | | | | | |
Collapse
|
13
|
Jannotti-Passos LK, Ruiz JC, Caldeira RL, Murta SMF, Coelho PMZ, Carvalho OS. Phylogenetic analysis of Biomphalaria tenagophila (Orbigny, 1835) (Mollusca: Gastropoda). Mem Inst Oswaldo Cruz 2011; 105:504-11. [PMID: 20721500 DOI: 10.1590/s0074-02762010000400027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 12/18/2009] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial DNA of Biomphalaria tenagophila, a mollusc intermediate host of Schistosoma mansoni in Brazil, was sequenced and characterised. The genome size found for B. tenagophila was 13,722 bp and contained 13 messenger RNAs, 22 transfer RNAs (tRNA) and two ribosomal RNAs (rRNA). In addition to sequencing, the mitochondrial DNA (mtDNA) genome organization of B. tenagophila was analysed based on its content and localization of both coding and non-coding regions, regions of gene overlap and tRNA nucleotide sequences. Sequences of protein, rRNA 12S and rRNA 16S nucleotides as well as gene organization were compared between B. tenagophila and Biomphalaria glabrata, as the latter is the most important S. mansoni intermediate host in Brazil. Differences between such species were observed regarding rRNA composition. The complete sequence of the B. tenagophila mitochondrial genome was deposited in GenBank (accession EF433576). Furthermore, phylogenetic relationships were estimated among 28 mollusc species, which had their complete mitochondrial genome deposited in GenBank, using the neighbour-joining method, maximum parsimony and maximum likelihood bootstrap. B. tenagophila was positioned at a branch close to B. glabrata and Pulmonata molluscs, collectively comprising a paraphyletic group, contrary to Opistobranchia, which was positioned at a single branch and constituted a monophyletic group.
Collapse
Affiliation(s)
- Liana K Jannotti-Passos
- Moluscário Lobato Paraense, Instituto de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, 30190-001 Belo Horizonte, MG, Brasil.
| | | | | | | | | | | |
Collapse
|
14
|
Garcia JS, Maldonado Junior A, Bidau CJ, Corrêa LDR, Lanfredi RM, Coelho PMZ. The effect of early infection with Echinostoma paraensei on the interaction of Schistosoma mansoni with Biomphalaria glabrata and Biomphalaria tenagophila. Mem Inst Oswaldo Cruz 2010; 105:499-503. [DOI: 10.1590/s0074-02762010000400026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 09/01/2009] [Indexed: 11/22/2022] Open
|
15
|
Effects of UVB on interactions between Schistosoma mansoni and Biomphalaria glabrata. J Invertebr Pathol 2009; 101:140-2. [DOI: 10.1016/j.jip.2009.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 04/01/2009] [Accepted: 04/06/2009] [Indexed: 11/21/2022]
|
16
|
Coelho PMZ, Rosa FM, Maciel E, Negrão-Correa DA, Carvalho OS, Caldeira RL, Jannotti-Passos LK, Moreira LA, Oliveira GC, Teles HM. Transmission control of schistosomiasis mansoni by introduction of a resistant strain of Biomphalaria tenagophila in areas where transmission is maintained by this species. Acta Trop 2008; 108:245-8. [PMID: 18598664 DOI: 10.1016/j.actatropica.2008.05.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 04/30/2008] [Accepted: 05/29/2008] [Indexed: 10/22/2022]
Abstract
Biomphalaria tenagophila Taim lineage has proved to be consistently resistant to Schistosoma mansoni. Several published works have shown that this resistance is due to the innate defence system of that strain, and in cross-breedings with susceptible strains the Taim lineage presents dominant character. These findings led to the hypothesis that, introducing this strain in areas where transmission of schistosomiasis is maintained by this species, the introduced lineage would perform cross-breeding with the local snails, thus generating offsprings resistant to the parasites. The perspectives of the proposed approach, as well as some preliminary results and problems related to the first introduction without a previous use of molluscicide are discussed.
Collapse
|
17
|
Barbosa L, Silva LM, Coelho PMZ, Santos SR, Fortes-Dias CL. Primary culture of the region of the amebocyte-producing organ of the snail Biomphalaria glabrata, the intermediate host of Schistosoma mansoni. Mem Inst Oswaldo Cruz 2006; 101:639-43. [PMID: 17072476 DOI: 10.1590/s0074-02762006000600010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 06/08/2006] [Indexed: 11/22/2022] Open
Abstract
Biomphalaria glabrata snails are major hosts for the digenetic trematoda Schistosoma mansoni, the causative agent of human schistosomiasis. The success or failure of the infection will be dependent on the mobilization of the molluskan internal defense system, where a major role will be played by circulating hemocytes produced by the APO (amebocyte-producing organ) of the snail. In this report, the primary culture of the APO region of B. glabrata was obtained for the first time, as well as a control culture of the ovotestis. Three different cell populations migrated easily from the explants in culture, with no need of any dispersion agent. The cells grew in suspension at an incubation temperature of 15 degrees C and the cultures were maintained viable for up to two weeks. Two of these cell populations obtained resembled cell types known to be present in the hemolymph of Biomphalaria. The availability of APO cells in culture may contribute to a better understanding of the internal defense in mollusks, in general, as well as the specific response of B. glabrata to S. mansoni infection.
Collapse
Affiliation(s)
- L Barbosa
- Departmento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
18
|
Barbosa L, Caldeira RL, Carvalho OS, Vidigal THDA, Jannotti-Passos LK, Coelho PMZ. Resistance to Schistosoma mansoni by transplantation of APO Biomphalaria tenagophila. Parasite Immunol 2006; 28:209-12. [PMID: 16629706 DOI: 10.1111/j.1365-3024.2006.00827.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transplantation of the haematopoietic organ from Biomphalaria tenagophila (Taim strain, RS, Brazil), resistant to Schistosoma mansoni, to a highly susceptible strain (Cabo Frio, RJ, Brazil) of the same species, showed in the recipient snails resistance against the trematode, when a successful transplant occurred. The success of transplantation could be confirmed by a typical molecular marker of the Taim strain in haemocytes of the recipients (350 bp detected by PCR-RFLP). The recipient snails which did not present the donor marker in haemocytes (unsuccessful transplantation) were infected with the parasite. The use of an atoxic modelling clay for closing the hole in the transplantation site reduced significantly the mortality caused by bleeding after transplantation procedures.
Collapse
Affiliation(s)
- L Barbosa
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Azevedo CM, Borges CC, Andrade ZA. Behavior of Schistosoma mansoni-induced histopathological lesions in Biomphalaria glabrata submitted to ionizing radiation. Rev Soc Bras Med Trop 2004; 37:218-21. [PMID: 15330060 DOI: 10.1590/s0037-86822004000300005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Present report demonstrates that repeated radiation of Schistosoma mansoni-infected Biomphalaria glabrata, totaling 15,000 rads, caused a sudden, albeit transient, suppression of cercarial shedding. Initially, sporocysts practically disappeared from the snail tissues. The more resistant developing cercariae presented nuclear clumping and vacuolation, before undergoing lysis. No host tissue reaction was evident at any time. Thirty-four days after the last irradiation, the snails resumed cercarial elimination. By that time numerous sporocysts and developing cercariae were detected, disseminated throughout snail tissues in a pattern similar to that of a highly malignant neoplasm, with no signs of host cellular reactions, which on the other hand were present in non-irradiated infected controls. The region of the ovo-testis was apparently destroyed after radiation, but returned to its normal appearance around 40 days after the last radiation. Ionizing radiation affected both host and parasite in S. mansoni-infected Biomphalaria glabrata, but the resulting impressive changes were soon reversed.
Collapse
Affiliation(s)
- Carine M Azevedo
- Programa Institucional de Bolsas de Iniciação Científica do Conselho Nacional de Pesquisa da Universidade Federal da Bahia, Salvador, BA, Brasil
| | | | | |
Collapse
|
20
|
Coelho PMZ, Carvalho OS, Andrade ZA, Martins-Sousa RL, Rosa FM, Barbosa L, Pereira CAJ, Caldeira RL, Jannotti-Passos LK, Godard ALB, Moreira LA, Oliveira GC, Franco GR, Teles HMS, Negrão-Corrêa D. Biomphalaria tenagophila/Schistosoma mansoni interaction: premises for a new approach to biological control of schistosomiasis. Mem Inst Oswaldo Cruz 2004; 99:109-11. [PMID: 15486646 DOI: 10.1590/s0074-02762004000900020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biomphalaria tenagophila is very important for schistosomiasis transmission in Brazil. However its mechanisms of interaction with Schistosoma mansoni are still scantly studied. Since this snail displays strains highly susceptible or completely resistant to the parasite infection, the knowledge of that would be a useful tool to understand the mechanism of snail resistance. Particularly, the Taim strain consistently shows absolute resistance against the trematode, and this resistance is a dominant character. A multidisciplinary research group was created aiming at studying B. tenagophila/S. mansoni interaction. The possibility for applying the knowledge acquired to obtain a biological model for the control of S. mansoni transmission in endemic areas is discussed.
Collapse
Affiliation(s)
- P M Z Coelho
- Centro de Pesquisas René Rachou-Fiocruz, Av. Augusto de Lima 1715, 30190-002 Belo Horizonte, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|