1
|
Boyce JM. Quaternary ammonium disinfectants and antiseptics: tolerance, resistance and potential impact on antibiotic resistance. Antimicrob Resist Infect Control 2023; 12:32. [PMID: 37055844 PMCID: PMC10099023 DOI: 10.1186/s13756-023-01241-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Due to the substantial increase in the use of disinfectants containing quaternary ammonion compounds (QACs) in healthcare and community settings during the COVID-19 pandemic, there is increased concern that heavy use might cause bacteria to develop resistance to QACs or contribute to antibiotic resistance. The purpose of this review is to briefly discuss the mechanisms of QAC tolerance and resistance, laboratory-based evidence of tolerance and resistance, their occurrence in healthcare and other real-world settings, and the possible impact of QAC use on antibiotic resistance. METHODS A literature search was conducted using the PubMed database. The search was limited to English language articles dealing with tolerance or resistance to QACs present in disinfectants or antiseptics, and potential impact on antibiotic resistance. The review covered the period from 2000 to mid-Jan 2023. RESULTS Mechanisms of QAC tolerance or resistance include innate bacterial cell wall structure, changes in cell membrane structure and function, efflux pumps, biofilm formation, and QAC degradation. In vitro studies have helped elucidate how bacteria can develop tolerance or resistance to QACs and antibiotics. While relatively uncommon, multiple episodes of contaminated in-use disinfectants and antiseptics, which are often due to inappropriate use of products, have caused outbreaks of healthcare-associated infections. Several studies have identified a correlation between benzalkonium chloride (BAC) tolerance and clinically-defined antibiotic resistance. The occurrence of mobile genetic determinants carrying multiple genes that encode for QAC or antibiotic tolerance raises the concern that widespread QAC use might facilitate the emergence of antibiotic resistance. Despite some evidence from laboratory-based studies, there is insufficient evidence in real-world settings to conclude that frequent use of QAC disinfectants and antiseptics has promoted widespread emergence of antibiotic resistance. CONCLUSIONS Laboratory studies have identified multiple mechanisms by which bacteria can develop tolerance or resistance to QACs and antibiotics. De novo development of tolerance or resistance in real-world settings is uncommon. Increased attention to proper use of disinfectants is needed to prevent contamination of QAC disinfectants. Additional research is needed to answer many questions and concerns related to use of QAC disinfectants and their potential impact on antibiotic resistance.
Collapse
Affiliation(s)
- John M Boyce
- J.M. Boyce Consulting, LLC, 5123 Town Place, Middletown, CT, Connecticut, USA.
| |
Collapse
|
2
|
Fox LJ, Kelly PP, Humphreys GJ, Waigh TA, Lu JR, McBain AJ. Assessing the risk of resistance to cationic biocides incorporating realism-based and biophysical approaches. J Ind Microbiol Biotechnol 2022; 49:kuab074. [PMID: 34718634 PMCID: PMC9113109 DOI: 10.1093/jimb/kuab074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022]
Abstract
The control of microorganisms is a key objective in disease prevention and in medical, industrial, domestic, and food-production environments. Whilst the effectiveness of biocides in these contexts is well-evidenced, debate continues about the resistance risks associated with their use. This has driven an increased regulatory burden, which in turn could result in a reduction of both the deployment of current biocides and the development of new compounds and formulas. Efforts to balance risk and benefit are therefore of critical importance and should be underpinned by realistic methods and a multi-disciplinary approach, and through objective and critical analyses of the literature. The current literature on this topic can be difficult to navigate. Much of the evidence for potential issues of resistance generation by biocides is based on either correlation analysis of isolated bacteria, where reports of treatment failure are generally uncommon, or laboratory studies that do not necessarily represent real biocide applications. This is complicated by inconsistencies in the definition of the term resistance. Similar uncertainties also apply to cross-resistance between biocides and antibiotics. Risk assessment studies that can better inform practice are required. The resulting knowledge can be utilised by multiple stakeholders including those tasked with new product development, regulatory authorities, clinical practitioners, and the public. This review considers current evidence for resistance and cross-resistance and outlines efforts to increase realism in risk assessment. This is done in the background of the discussion of the mode of application of biocides and the demonstrable benefits as well as the potential risks.
Collapse
Affiliation(s)
- Laura J Fox
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Paul P Kelly
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Gavin J Humphreys
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Thomas A Waigh
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Jian R Lu
- Biological Physics, Department of Physics and Astronomy, Schuster Building, Faculty of Science and Engineering, University of Manchester, M13 9PL, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
3
|
Chen B, Han J, Dai H, Jia P. Biocide-tolerance and antibiotic-resistance in community environments and risk of direct transfers to humans: Unintended consequences of community-wide surface disinfecting during COVID-19? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117074. [PMID: 33848900 PMCID: PMC8019131 DOI: 10.1016/j.envpol.2021.117074] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/09/2021] [Accepted: 03/30/2021] [Indexed: 05/17/2023]
Abstract
During the current pandemic, chemical disinfectants are ubiquitously and routinely used in community environments, especially on common touch surfaces in public settings, as a means of controlling the virus spread. An underappreciated risk in current regulatory guidelines and scholarly discussions, however, is that the persisting input of chemical disinfectants can exacerbate the growth of biocide-tolerant and antibiotic-resistant bacteria on those surfaces and allow their direct transfers to humans. For COVID-19, the most commonly used disinfecting agents are quaternary ammonium compounds, hydrogen peroxide, sodium hypochlorite, and ethanol, which account for two-thirds of the active ingredients in current EPA-approved disinfectant products for the novel coronavirus. Tolerance to each of these compounds, which can be either intrinsic or acquired, has been observed on various bacterial pathogens. Of those, mutations and horizontal gene transfer, upregulation of efflux pumps, membrane alteration, and biofilm formation are the common mechanisms conferring biocide tolerance in bacteria. Further, the linkage between disinfectant use and antibiotic resistance was suggested in laboratory and real-life settings. Evidence showed that substantial bacterial transfers to hands could effectuate from short contacts with surrounding surfaces and further from fingers to lips. While current literature on disinfectant-induced antimicrobial resistance predominantly focuses on municipal wastes and the natural environments, in reality the community and public settings are most severely impacted by intensive and regular chemical disinfecting during COVID-19 and, due to their proximity to humans, biocide-tolerant and antibiotic-resistant bacteria emerged in these environments may pose risks of direct transfers to humans, particularly in densely populated urban communities. Here we highlight these risk factors by reviewing the most pertinent and up-to-date evidence, and provide several feasible strategies to mitigate these risks in the scenario of a prolonging pandemic.
Collapse
Affiliation(s)
- Bo Chen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China; Department of Environmental Science and Engineering, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Han Dai
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Puqi Jia
- Department of Environmental Science and Engineering, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
4
|
Genteluci GL, Gomes DBC, Pereira D, Neves MDC, de Souza MJ, Rangel K, Villas Bôas MHS. Multidrug-resistant Acinetobacter baumannii: differential adherence to HEp-2 and A-549 cells. Braz J Microbiol 2020; 51:657-664. [PMID: 32180159 DOI: 10.1007/s42770-020-00252-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/28/2020] [Indexed: 12/16/2022] Open
Abstract
Acinetobacter baumannii has been associated with antimicrobial resistance and ability to form biofilms. Furthermore, its adherence to host cells is an important factor to the colonization process. Therefore, this study intended to identify some virulence factors that can explain the success of A. baumannii in causing nosocomial infections. We studied 92 A. baumannii isolates collected from hospitals in Rio de Janeiro, Brazil. Isolates were identified and the susceptibility to antimicrobials was determined. Oxacilinase type β-lactamase encoding genes were amplified by polymerase chain reaction, and genetic diversity was investigated by pulsed-field gel electrophoresis (PFGE). In addition, biofilm formation on polystyrene plates using crystal violet staining was quantified, and adherence to human cell lines was evaluated. Eighty-six isolates were multidrug-resistant, of which 93% were carbapenem-resistant. All isolates had the blaOXA-51 gene and 94% had the blaOXA-23 gene, other searched blaOXA genes were not detected. PFGE typing showed two predominant clones, and biofilm production was observed in 79% of isolates. A. baumannii isolates adhered better to HEp-2 cell compared with A-549 cell. Clones A, B, E, and F showed a significantly increased adherence to HEp-2 compared with adherence to A-549 cell. Our findings revealed that A. baumannii isolates had high frequencies of resistance to antimicrobial agents, ability to form biofilm, and capacity to adhere to HEp-2 cells.
Collapse
Affiliation(s)
- Gabrielle Limeira Genteluci
- Department of Microbiology, National Institute of Quality Control in Heath, Fiocruz, Rio de Janeiro, Brazil.
- Post-Graduation Program in Health Surveillance, Fiocruz, National Institute of Quality Control in Heath, Rio de Janeiro, Brazil.
| | - Daniela Betzler Cardoso Gomes
- Department of Microbiology, National Institute of Quality Control in Heath, Fiocruz, Rio de Janeiro, Brazil
- Post-Graduation Program in Health Surveillance, Fiocruz, National Institute of Quality Control in Heath, Rio de Janeiro, Brazil
| | - Daniella Pereira
- Department of Microbiology, National Institute of Quality Control in Heath, Fiocruz, Rio de Janeiro, Brazil
| | - Marta de Campos Neves
- Department of Microbiology, National Institute of Quality Control in Heath, Fiocruz, Rio de Janeiro, Brazil
| | | | - Karyne Rangel
- Department of Microbiology, National Institute of Quality Control in Heath, Fiocruz, Rio de Janeiro, Brazil
| | | |
Collapse
|
5
|
Ivanković T, Goić-Barišić I, Hrenović J. Reduced susceptibility to disinfectants of Acinetobacter baumannii biofilms on glass and ceramic. Arh Hig Rada Toksikol 2019; 68:99-108. [PMID: 30500776 DOI: 10.1515/aiht-2017-68-2946] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 06/01/2017] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to determine the susceptibility of hospital and environmental Acinetobacter baumannii isolate biofilms on ceramics and glass to common disinfectants benzalkonium chloride and chlorhexidine. For this purpose we developed a new method for biofilm cultivation and quantification on ceramics. The biofilm bacteria were more resistant to disinfectants than the planktonic populations, as more than 50 % of the biofilm population and none of the planktonic population survived 5-minute exposure. Furthermore, biofilm populations on ceramic tiles were significantly more resistant than those on glass coverslips, even though the amount of biofilm was practically the same on ceramics and glass. The reason for reduced susceptibility of A. baumannii biofilms on ceramics may be related to surface/disinfection interactions. Our findings suggest that biofilms on ceramic surfaces can be an important source of A. baumannii infection in hospital environments.
Collapse
Affiliation(s)
- Tomislav Ivanković
- University of Zagreb, Faculty of Science, Department of BiologyRooseveltov trg 6, 10000Zagreb, Croatia
| | - Ivana Goić-Barišić
- Zagreb, University of Split School of Medicine, Hospital Centre Split, Department of Clinical Microbiology,Split, Croatia
| | - Jasna Hrenović
- University of Zagreb, Faculty of Science, Department of Biology,Split, Croatia
| |
Collapse
|
6
|
Abstract
Biocides and formulated biocides are used worldwide for an increasing number of applications despite tightening regulations in Europe and in the United States. One concern is that such intense usage of biocides could lead to increased bacterial resistance to a product and cross-resistance to unrelated antimicrobials including chemotherapeutic antibiotics. Evidence to justify such a concern comes mostly from the use of health care-relevant bacterial isolates, although the number of studies of the resistance characteristics of veterinary isolates to biocides have increased the past few years. One problem remains the definition of "resistance" and how to measure resistance to a biocide. This has yet to be addressed globally, although the measurement of resistance is becoming more pressing, with regulators both in Europe and in the United States demanding that manufacturers provide evidence that their biocidal products will not impact on bacterial resistance. Alongside in vitro evidence of potential antimicrobial cross-resistance following biocide exposure, our understanding of the mechanisms of bacterial resistance and, more recently, our understanding of the effect of biocides to induce a mechanism(s) of resistance in bacteria has improved. This article aims to provide an understanding of the development of antimicrobial resistance in bacteria following a biocide exposure. The sections provide evidence of the occurrence of bacterial resistance and its mechanisms of action and debate how to measure bacterial resistance to biocides. Examples pertinent to the veterinary field are used where appropriate.
Collapse
|
7
|
Ciui B, Tertiş M, Cernat A, Săndulescu R, Wang J, Cristea C. Finger-Based Printed Sensors Integrated on a Glove for On-Site Screening Of Pseudomonas aeruginosa Virulence Factors. Anal Chem 2018; 90:7761-7768. [DOI: 10.1021/acs.analchem.8b01915] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bianca Ciui
- Analytical Chemistry Department, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
| | - Mihaela Tertiş
- Analytical Chemistry Department, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
| | - Andreea Cernat
- Analytical Chemistry Department, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
| | - Robert Săndulescu
- Analytical Chemistry Department, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Cecilia Cristea
- Analytical Chemistry Department, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400349, Romania
| |
Collapse
|
8
|
de Campos PA, Royer S, Batistão DWDF, Araújo BF, Queiroz LL, de Brito CS, Gontijo-Filho PP, Ribas RM. Multidrug Resistance Related to Biofilm Formation in Acinetobacter baumannii and Klebsiella pneumoniae Clinical Strains from Different Pulsotypes. Curr Microbiol 2016; 72:617-27. [PMID: 26846651 DOI: 10.1007/s00284-016-0996-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/22/2015] [Indexed: 11/25/2022]
Abstract
The emergence of Acinetobacter baumannii and Klebsiella pneumoniae strains in the hospital environment has been associated with the presence of multiple genetic elements, virulence factors and the ability to form biofilms. This study evaluated the biofilm formation ability of clinical and environmental A. baumannii and K. pneumoniae strains, isolated from various sources and presenting different molecular characteristics, resistance profiles and pulsed-field gel electrophoresis patterns. Fifty-three isolates were recovered from 2009 to 2014 in a Brazilian university hospital. Investigation of biofilm formation was performed for 10 strains of each species assessed by an initial adhesion assay, biofilm cell concentration and biofilm biomass, evaluated by quantitative assays in replicates, in three independent experiments. All strains of A. baumannii were able to attach to polystyrene plates, although two strains adhered to a lesser degree than the control. K. pneumoniae strains showed opposite behaviour, where only three strains adhered significantly when compared to the control. Quantitative evaluation revealed that in five A. baumannii and four K. pneumoniae isolates the biomass production could be characterised as moderate. None of the isolates were strong biofilm producers. Our results demonstrate: (1) biofilm formation is a heterogeneous property amongst A. baumannii and K. pneumoniae clinical strains and it was not associated with certain clonal types; (2) no relationship between multidrug resistance and biofilm production was observed; (3) more virulent K. pneumoniae strains tended to present higher production of biofilm.
Collapse
Affiliation(s)
- Paola Amaral de Campos
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| | - Sabrina Royer
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil.
| | - Deivid William da Fonseca Batistão
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| | - Bruna Fuga Araújo
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| | - Lícia Ludendorff Queiroz
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| | - Cristiane Silveira de Brito
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| | - Paulo P Gontijo-Filho
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| | - Rosineide Marques Ribas
- Laboratory of Molecular Microbiology, Biomedical Science Institute, Federal University of Uberlândia, Av. Pará, 1720, Umuarama, Uberlândia, MG, 38400-902, Brazil
| |
Collapse
|
9
|
El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, Marei HE, Ashour HM. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol 2015; 10:1683-706. [PMID: 26439366 DOI: 10.2217/fmb.15.48] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antimicrobial resistance is one of the most serious public health issues facing humans since the discovery of antimicrobial agents. The frequent, prolonged, and uncontrolled use of antimicrobial agents are major factors in the emergence of antimicrobial-resistant bacterial strains, including multidrug-resistant variants. Pseudomonas aeruginosa is a leading cause of nosocomial infections. The abundant data on the increased resistance to antipseudomonal agents support the need for global action. There is a paucity of new classes of antibiotics active against P. aeruginosa. Here, we discuss recent antibacterial resistance profiles and mechanisms of resistance by P. aeruginosa. We also review future potential methods for controlling antibiotic-resistant bacteria, such as phage therapy, nanotechnology and antipseudomonal vaccines.
Collapse
Affiliation(s)
- Mohamed E El Zowalaty
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.,BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar
| | - Asmaa A Al Thani
- BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar.,Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02018, USA.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Ahmed E El Zowalaty
- Department of Physiology & Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.,Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Herbert P Schweizer
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL 32611, USA.,Emerging Pathogens Institute, Institute for Therapeutic Innovation, University of Florida Gainesville, FL 32611, USA
| | - Gheyath K Nasrallah
- BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar.,Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Hany E Marei
- BioMedical Research Center, Qatar University, Doha, PO Box 2713, Qatar
| | - Hossam M Ashour
- Department of Microbiology & Immunology, Faculty of Pharmacy, Cairo University, Egypt.,Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
10
|
Royer S, Faria ALS, Seki LM, Chagas TPG, Campos PAD, Batistão DWDF, Asensi MD, Gontijo Filho PP, Ribas RM. Spread of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa clones in patients with ventilator-associated pneumonia in an adult intensive care unit at a university hospital. Braz J Infect Dis 2015; 19:350-7. [PMID: 25997783 PMCID: PMC9427451 DOI: 10.1016/j.bjid.2015.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/24/2015] [Accepted: 03/29/2015] [Indexed: 01/09/2023] Open
Abstract
Background In Brazil, ventilator-associated pneumonia (VAP) caused by carbapenem resistant Acinetobacter baumannii and Pseudomonas aeruginosa isolates are associated with significant mortality, morbidity and costs. Studies on the clonal relatedness of these isolates could lay the foundation for effective infection prevention and control programs. Objectives We sought to study the epidemiological and molecular characteristics of A. baumannii vs. P. aeruginosa VAP in an adult intensive care unit (ICU). Methods It was conducted a cohort study of patients with VAP caused by carbapenem resistant A. baumannii and P. aeruginosa during 14 months in an adult ICU. Genomic studies were used to investigate the clonal relatedness of carbapenem resistant OXA-23-producing A. baumannii and P. aeruginosa clinical isolates. The risk factors for acquisition of VAP were also evaluated. Clinical isolates were collected for analysis as were samples from the environment and were typed using pulsed field gel electrophoresis. Results Multivariate logistic regression analysis identified trauma diagnosed at admission and inappropriate antimicrobial therapy as independent variables associated with the development of A. baumannii VAP and hemodialysis as independent variable associated with P. aeruginosa VAP. All carbapenem resistant clinical and environmental isolates of A. baumannii were OXA-23 producers. No MBL-producer P. aeruginosa was detected. Molecular typing revealed a polyclonal pattern; however, clone A (clinical) and H (surface) were the most frequent among isolates of A. baumannii tested, with a greater pattern of resistance than other isolates. In P. aeruginosa the most frequent clone I was multi-sensitive. Conclusion These findings suggest the requirement of constant monitoring of these microorganisms in order to control the spread of these clones in the hospital environment.
Collapse
Affiliation(s)
- Sabrina Royer
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Ana Luiza Souza Faria
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Liliane Miyuki Seki
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Thiago Pavoni Gomes Chagas
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Paola Amaral de Campos
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Marise Dutra Asensi
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Paulo P Gontijo Filho
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rosineide Marques Ribas
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| |
Collapse
|
11
|
Abstract
Pasteurella multocida (P. multocida) infections vary widely, from local infections resulting from animal bites and scratches to general infections. As of yet, no vaccine against P. multocida has been developed, and the most effective way to prevent pathogenic transmission is to clean the host environment using disinfectants. In this study, we identified which disinfectants most effectively inhibited environmental isolates of P. multocida. Three readily available disinfectants were compared: 3% hydrogen peroxide (HP), 70% isopropyl alcohol, and synthetic phenol. In suspension tests and zone inhibition tests, 3% HP was the most promising disinfectant against P. multocida.
Collapse
Affiliation(s)
- In-Soo Jung
- College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hyun-Jung Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Won-Yong Jung
- College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Chan-Wha Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
| |
Collapse
|
12
|
Genome Sequence of the Nonpathogenic Pseudomonas aeruginosa Strain ATCC 15442. GENOME ANNOUNCEMENTS 2014; 2:2/2/e00421-14. [PMID: 24786961 PMCID: PMC4007996 DOI: 10.1128/genomea.00421-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas aeruginosa ATCC 15442 is an environmental strain of the Pseudomonas genus. Here, we present a 6.77-Mb assembly of its genome sequence. Besides giving insights into characteristics associated with the pathogenicity of P. aeruginosa, such as virulence, drug resistance, and biofilm formation, the genome sequence may provide some information related to biotechnological utilization of the strain.
Collapse
|
13
|
Abdallah M, Benoliel C, Drider D, Dhulster P, Chihib NE. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch Microbiol 2014; 196:453-72. [PMID: 24744186 DOI: 10.1007/s00203-014-0983-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 11/30/2022]
Abstract
The biofilm formation on abiotic surfaces in food and medical sectors constitutes a great public health concerns. In fact, biofilms present a persistent source for pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, which lead to severe infections such as foodborne and nosocomial infections. Such biofilms are also a source of material deterioration and failure. The environmental conditions, commonly met in food and medical area, seem also to enhance the biofilm formation and their resistance to disinfectant agents. In this regard, this review highlights the effect of environmental conditions on bacterial adhesion and biofilm formation on abiotic surfaces in the context of food and medical environment. It also describes the current and emergent strategies used to study the biofilm formation and its eradication. The mechanisms of biofilm resistance to commercialized disinfectants are also discussed, since this phenomenon remains unclear to date.
Collapse
Affiliation(s)
- Marwan Abdallah
- Laboratoire de Procédés Biologiques, Génie Enzymatique et Microbien (ProBioGEM), IUT A/Polytech'Lille, Université de Lille1-Science et Technologies, Avenue Paul Langevin, 59655, Villeneuve d'Ascq Cedex, France
| | | | | | | | | |
Collapse
|
14
|
Outbreaks, persistence, and high mortality rates of multiresistant Pseudomonas aeruginosa infections in a hospital with AIDS-predominant admissions. Braz J Infect Dis 2012; 15:312-22. [PMID: 21861000 DOI: 10.1016/s1413-8670(11)70198-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/15/2011] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Authors have reported increased incidence of multiresistant Pseudomonas aeruginosa (MR-PA) infections worldwide over the last decade. Researchers have proposed multifaceted approaches to control MR-PA infections, but none have been reported in the acquired immunodeficiency syndrome (AIDS) setting. OBJECTIVE AND METHODS Herein we report the impact of a multifaceted intervention for controlling MR-PA over five years in a hospital with AIDS-predominant admissions and describe the clinical characteristics of MR-PA infection in our patient population. The clinical outcomes of infected patients and molecular characteristics of the isolated strains were used as tools for controlling MR-PA infection rates. RESULTS Significant temporary decrease of new infections was achieved after intervention, although a high level of diagnostic suspicion of nosocomial infection was maintained. We obtained 35 P. aeruginosa isolates with multiresistant profiles from 13 infected and 3 colonized patients and 2 environmental samples. Most of the patients (94%) were immunocompromised with AIDS (n = 10) or HTLV-1 infections (n = 5). Of the followed patients, 67% had persistent and/or recurrent infections, and 92% died. We observed differences in the antibiotic-resistance pattern of MR-PA infection/colonization during two outbreaks, although the genetic profiles of the tested strains were identical. CONCLUSIONS Therefore, we concluded that early multidisciplinary interventions are essential for reducing the burden caused by this microorganism in patients with AIDS. Prolonged or suppressive antibiotic-based therapy should be considered for MR-PA infections in patients with AIDS because of the persistence characteristic of MR-PA in these patients.
Collapse
|
15
|
Rodrigues ACS, Chang MR, Nóbrega GD, Rodrigues MS, Carvalho NCP, Gomes BG, Almeida DLD, Carvalho KR, Asensi MD. Metallo-β-lactamase and genetic diversity of Pseudomonas aeruginosa in intensive care units in Campo Grande, MS, Brazil. Braz J Infect Dis 2011; 15:195-9. [PMID: 21670916 DOI: 10.1016/s1413-8670(11)70174-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Accepted: 12/21/2010] [Indexed: 10/27/2022] Open
Abstract
Infection by Pseudomonas aeruginosa has spread worldwide, with limited options for treatment. The purpose of this study was to investigate metallo-β-lactamase-producing P. aeruginosa strains and compare their genetic profile using samples collected from patients in intensive care units. Forty P. aeruginosa strains were isolated from two public hospitals in Campo Grande, Mato Grosso do Sul State, from January 1st, 2007 to June 31st, 2008. Profiles of antimicrobial susceptibility were determined using the agar diffusion method. Metallo-β-lactamase was investigated using the double-disk diffusion test and PCR. Molecular typing was performed by pulsed-field gel electrophoresis (PFGE). Respiratory and urinary tracts were the most common isolation sites. Of the 40 samples tested, 72.5% (29/40) were resistant to ceftazidime and 92.5% (37/40) to imipenem, whereas 65% (26/40) were resistant to both antimicrobials. Fifteen pan-resistant samples were found. Five percent (2/40) of samples were positive for metallo-β-lactamase on the phenotype test. No metallo-β-lactamase subtype was detected by PCR. Macrorestriction analysis revealed 14 distinct genetic patterns. Based on the superior accuracy of PCR, it can be inferred that P. aeruginosa isolates from the investigated hospitals have alternative mechanisms of carbapenem resistance. The results also suggest clonal spread of P. aeruginosa between the studied hospitals.
Collapse
Affiliation(s)
- Ana Claudia Souza Rodrigues
- Health and Development Post-graduation Program, Central-West Region, Universidade Federal de Mato Grosso do Sul, MS, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Presence of qacEΔ1 Gene and Susceptibility to a Hospital Biocide in Clinical Isolates of Pseudomonas aeruginosa Resistant to Antibiotics. Curr Microbiol 2011; 63:16-21. [DOI: 10.1007/s00284-011-9934-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/29/2011] [Indexed: 12/11/2022]
|
17
|
Carvalho KR, Carvalho-Assef APD, Peirano G, Santos LCGD, Pereira MJF, Asensi MD. Dissemination of multidrug-resistant Acinetobacter baumannii genotypes carrying bla(OXA-23) collected from hospitals in Rio de Janeiro, Brazil. Int J Antimicrob Agents 2009; 34:25-8. [PMID: 19216059 DOI: 10.1016/j.ijantimicag.2008.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 10/21/2022]
Abstract
The present study reports the dissemination of multidrug-resistant (MDR) OXA-23-producing Acinetobacter baumannii clones throughout hospitals in Rio de Janeiro, Brazil. A total of 110 imipenem-resistant A. baumannii isolates were obtained from January 2006 to September 2007 in eight hospitals. The modified Hodge test was performed to screen for carbapenemase production. Polymerase chain reaction (PCR) and DNA sequencing were performed for the detection of bla(IMP), bla(VIM), bla(OXA-23-like), bla(OXA-24-like), bla(OXA-58) and the class 1 integron. Isolates were typed by pulsed-field gel electrophoresis (PFGE) following digestion with ApaI. All the isolates were MDR and 96 (87.3%) produced the carbapenemase OXA-23. No isolates produced OXA-24, OXA-58 or the metallo-beta-lactamases IMP and VIM. The class 1 integron was absent in all isolates. The A. baumannii isolates were separated into five genotypes, with the highest prevalence of genotype A (71.8%) followed by genotype B (22.7%). Genotype A was present in seven hospitals, whilst genotype B had spread in five hospitals. The OXA-23-producing isolates belonged to all genotypes. The presence of MDR OXA-23-producing A. baumannii in different hospitals in Rio de Janeiro emphasises the need to control the use of carbapenems and to prevent the spread of these organisms in Rio de Janeiro.
Collapse
Affiliation(s)
- Karyne Rangel Carvalho
- Instituto Oswaldo Cruz/FIOCRUZ, Av. Brasil 4365, Manguinhos, Rio de Janeiro, CEP: 21040-360, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
18
|
Campos LC, Lobianco LF, Seki LM, Santos RMR, Asensi MD. Outbreak of Enterobacter hormaechei septicaemia in newborns caused by contaminated parenteral nutrition in Brazil. J Hosp Infect 2007; 66:95-7. [PMID: 17428576 DOI: 10.1016/j.jhin.2007.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 02/20/2007] [Indexed: 11/21/2022]
|
19
|
Pitout JDD, Chow BL, Gregson DB, Laupland KB, Elsayed S, Church DL. Molecular epidemiology of metallo-beta-lactamase-producing Pseudomonas aeruginosa in the Calgary Health Region: emergence of VIM-2-producing isolates. J Clin Microbiol 2006; 45:294-8. [PMID: 17122002 PMCID: PMC1829051 DOI: 10.1128/jcm.01694-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A study was designed to describe the molecular epidemiology of carbapenem-resistant (CR) Pseudomonas aeruginosa in a large well-defined geographical region with a centralized laboratory system serving one pediatric and three large adult hospitals (acute care centers I, II, and III). Molecular characterization was done using PCR with sequencing of the integron-associated gene cassettes. Pulsed-field gel electrophoresis (PFGE) using a modified combined Stenotrophomas maltophilia and Streptococcus pneumoniae protocol with SpeI was performed on CR P. aeruginosa strains isolated in the Calgary Health Region during 2002-2006. The majority (96%) of metallo-beta-lactamase (MBL)-producing isolates produced VIM-2 with gene cassettes aacC1 and aacA4, while 4% produced IMP-7 with gene cassettes aacC4 and aacC1. Eighty-six percent of VIM-2 producers belonged to a cluster (MBLV) that was responsible for nosocomial outbreaks during 2003 (intensive care unit) and 2004 (bone marrow transplant unit) at acute care center I. Environmental isolates from these units also belonged to MBLV. The majority of strains from cluster MBLVR (related to MBLV) were present in acute care center III. Isolates producing IMP-7 belonged to a different cluster (MBLI) and were related to strains described during the 1990 s. PFGE of the MBL-negative CR strains showed that 37% belonged to a closely related cluster, NMBL, whose members were predominantly isolated from acute care center II. Our findings suggest that CR and dissemination of MBL clusters among P. aeruginosa populations in large geographic healthcare regions are dynamic processes that require continuous molecular surveillance.
Collapse
Affiliation(s)
- Johann D D Pitout
- Division of Microbiology, Calgary Laboratory Services, #9, 3535 Research Road NW, Calgary, Alberta, Canada T2L 2K8.
| | | | | | | | | | | |
Collapse
|