1
|
Paula AT, Ribeiro KVG, Cardoso KF, Bastos DSS, Santos EC, Novaes RD, Cardoso SA, Oliveira LL. Protective immunity triggered by ectonucleoside triphosphate diphosphohydrolase-based biopharmaceuticals attenuates cardiac parasitism and prevents mortality in Trypanosoma cruzi infection. Bioorg Med Chem 2022; 72:116966. [PMID: 35998390 DOI: 10.1016/j.bmc.2022.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
Chagas disease is a potentially fatal infection in 21 endemic Latin America countries for which the effectiveness of reference antiparasitic chemotherapy is limited. Thus, we developed three biopharmaceuticals and evaluated the effectiveness of different immunization strategies (recombinant protein NTPDase-1 [rNTPDase-1], DNA plasmid encoding Trypanosoma cruzi NTPDase-1 [TcNTPDase-1] and DNA-NTPDase-1 prime/rNTPDase-1 boost [Prime-boost]) based on the surface ecto-nucleoside triphosphate diphosphohydrolase (ecto-NTPDase) enzyme of T. cruzi in animals challenged with a virulent strain (Y) of this parasite. BALB/c mice were immunized three times at 30 days intervals, challenged with T. cruzi 15 days after the last immunization, and euthanized 30 days after T. cruzi challenge. Our results showed limited polarization of specific anti-ecto-NTPDase immunoglobulins in mice receiving both immunization protocols. Conversely, the Prime-boost strategy stimulated the Th1 protective phenotype, upregulating TNF-α and downregulating IL-10 production while increasing the activation/distribution of CD3+/CD8+, CD4+/CD44hi and CD8+/CD44hi/CD62L cells in immunized and infected mice. Furthermore, IL-6 and IL10 levels were reduced, while the distribution of CD4+/CD44hi and CD3+/CD8+ cells was increased from rNTPDase-1 and DNA-NTPDase1-based immunization strategies. Animals receiving DNA-NTPDase1 and Prime-boost protocols before T. cruzi challenged exhibited an enhanced immunological response associated with IL-17 upregulation and remarkable downregulation of heart parasitism (T. cruzi DNA) and mortality. These findings indicated that NTPDase-1 with Prime-boost strategy induced a protective and sustained Th17 response, enhancing host resistance against T. cruzi. Thus, ecto-NTPDase is a potentially relevant and applicable in the development of biopharmaceuticals with greater immunoprophylactic potential for Chagas disease.
Collapse
Affiliation(s)
| | | | | | | | - Eliziária Cardoso Santos
- School of Medicine, Federal University of Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| | - Rômulo Dias Novaes
- Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Silvia Almeida Cardoso
- Department of Medicine and Nursing, Federal University of Viçosa, Viçosa 36570-900, MG, Brazil
| | | |
Collapse
|
2
|
Gonçalves KR, Mazzeti AL, Nascimento AFDS, Castro-Lacerda In Memory JM, Nogueira-Paiva NC, Mathias FAS, Reis AB, Caldas S, Bahia MT. The entrance route: Oral, mucous, cutaneous, or systemic has a marked influence on the outcome of Trypanosoma cruzi experimental infection. Acta Trop 2022; 234:106581. [PMID: 35779591 DOI: 10.1016/j.actatropica.2022.106581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022]
Abstract
In recent decades, the oral infection of Trypanosoma cruzi has gathered increased attention due to frequent outbreaks that can lead to more severe clinical signs than those usually found in the areas of vector transmission. This study addresses the main routes of infection using metacyclic trypomastigotes (MT) and blood trypomastigotes (BT). Herein, BALB/c mice were infected with the Colombian (TcI) strain via intraperitoneal (IP), oral, intragastric (IG), ocular (OC) and cutaneous (CT) routes with 106 culture-derived MT or BT. Parasitemia was intermittent and low in animals inoculated with MT, in contrast, high parasitemia levels were found in BT-mice. A tropism for the muscles was observed in oral or IG infection with BT. Differently, the parasite was widely distributed in the tissues of mice infected with MT. However, the intensity of the inflammation infiltrating the tissues was higher in oral or IG infection with BT. Animals inoculated with BT via the IG route had similar serum levels of IFN-γ and smaller IL-10 compared to those infected with MT via the IG route. TNF-α levels were higher in the serum from BT-animals, which could explain the higher intensity of heart inflammation in these animals. Our results suggest that the infective form and the route of infection differentially modulated the outcome of Trypanosoma cruzi mice infection.
Collapse
Affiliation(s)
- Karolina Ribeiro Gonçalves
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro - Ouro Preto, Minas Gerais, Brasil.
| | - Ana Lia Mazzeti
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Rio de Janeiro, Brasil; Laboratório de Parasitologia Aplicada, Universidade Estadual de Minas Gerais - Unidade Passos, Av. Juca Stockler, 1130 Passos, Minas Gerais, Brasil
| | - Alvaro Fernando da Silva Nascimento
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro - Ouro Preto, Minas Gerais, Brasil
| | - Jéssica Mara Castro-Lacerda In Memory
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro - Ouro Preto, Minas Gerais, Brasil
| | - Nívia Carolina Nogueira-Paiva
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro - Ouro Preto, Minas Gerais, Brasil
| | - Fernando Augusto Siqueira Mathias
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro - Ouro Preto, Minas Gerais, Brasil; Laboratório de Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Av. Augusto de Lima, 1715 Belo Horizonte, Minas Gerais, Brasil
| | - Alexandre Barbosa Reis
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro - Ouro Preto, Minas Gerais, Brasil
| | - Sérgio Caldas
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro - Ouro Preto, Minas Gerais, Brasil; Serviço de Biotecnologia e Saúde, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Rua Conde Pereira Carneiro, 80 - Belo Horizonte, Minas Gerais, Brasil
| | - Maria Terezinha Bahia
- Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário, Morro do Cruzeiro - Ouro Preto, Minas Gerais, Brasil
| |
Collapse
|
3
|
Farani PSG, Ferreira BIS, Gibaldi D, Lannes-Vieira J, Moreira OC. Modulation of miR-145-5p and miR-146b-5p levels is linked to reduced parasite load in H9C2 Trypanosoma cruzi infected cardiomyoblasts. Sci Rep 2022; 12:1436. [PMID: 35082354 PMCID: PMC8791985 DOI: 10.1038/s41598-022-05493-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/06/2022] [Indexed: 11/15/2022] Open
Abstract
In the heart tissue of acutely Trypanosoma cruzi-infected mice miR-145-5p and miR-146b-5p are, respectively, downregulated and upregulated. Here, we used the H9C2 rat cardiomyoblast cell line infected with the Colombian T. cruzi strain to investigate the parasite-host cell interplay, focusing on the regulation of miR-145-5p and miR-146b-5p expression. Next, we explored the effects of interventions with the trypanosomicidal drug Benznidazole (Bz) alone or combined with Pentoxifylline (PTX), a methylxanthine derivative shown to modulate immunological and cardiac abnormalities in a model of chronic chagasic cardiomyopathy, on parasite load and expression of miR-145-5p and miR-146b-5p. The infection of H9C2 cells with trypomastigote forms allowed parasite cycle with intracellular forms multiplication and trypomastigote release. After 48 and 144 h of infection, upregulation of miR-145-5p (24 h: 2.38 ± 0.26; 48 h: 3.15 ± 0.9-fold change) and miR-146b-5b (24 h: 2.60 ± 0.46; 48 h: 2.97 ± 0.23-fold change) was detected. The peak of both miRNA levels paralleled with release of trypomastigote forms. Addition of 3 µM and 10 µM of Bz 48 h after infection reduced parasite load but did not interfere with miR-145-5p and miR-146b-5p levels. Addition of PTX did not interfere with Bz-induced parasite control efficacy. Conversely, combined Bz + PTX treatment decreased the levels of both microRNAs, resembling the expression levels detected in non-infected H9C2 cells. Moreover, the use of miR-145-5p and miR-146b-5p mimic/inhibitor systems before infection of H9C2 cells decreased parasite load, 72 h postinfection. When H9C2 cells were treated with miR-145-5p and miR-146b-5p mimic/inhibitor 48 h after infection, all the used systems, except the miR-146b-5p inhibitor, reduced parasite load. Altogether, our data indicate that these microRNAs putatively control signaling pathways crucial for parasite–host cell interaction. Thus, miR-145-5p and miR-146b-5p deserve to be further investigated as biomarkers of parasite control and tools to identify therapeutic adjuvants to etiological treatment in Chagas disease.
Collapse
Affiliation(s)
- Priscila Silva Grijó Farani
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Beatriz Iandra Silva Ferreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Otacilio Cruz Moreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Martinez-Peinado N, Cortes-Serra N, Sherman J, Rodriguez A, Bustamante JM, Gascon J, Pinazo MJ, Alonso-Padilla J. Identification of Trypanosoma cruzi Growth Inhibitors with Activity In Vivo within a Collection of Licensed Drugs. Microorganisms 2021; 9:microorganisms9020406. [PMID: 33669310 PMCID: PMC7920067 DOI: 10.3390/microorganisms9020406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 11/17/2022] Open
Abstract
Chagas disease, caused by the parasite Trypanosoma cruzi (T. cruzi), affects more than six million people worldwide, with its greatest burden in Latin America. Available treatments present frequent toxicity and variable efficacy at the chronic phase of the infection, when the disease is usually diagnosed. Hence, development of new therapeutic strategies is urgent. Repositioning of licensed drugs stands as an attractive fast-track low-cost approach for the identification of safer and more effective chemotherapies. With this purpose we screened 32 licensed drugs for different indications against T. cruzi. We used a primary in vitro assay of Vero cells infection by T. cruzi. Five drugs showed potent activity rates against it (IC50 < 4 µmol L−1), which were also specific (selectivity index >15) with respect to host cells. T. cruzi inhibitory activity of four of them was confirmed by a secondary anti-parasitic assay based on NIH-3T3 cells. Then, we assessed toxicity to human HepG2 cells and anti-amastigote specific activity of those drugs progressed. Ultimately, atovaquone-proguanil, miltefosine, and verapamil were tested in a mouse model of acute T. cruzi infection. Miltefosine performance in vitro and in vivo encourages further investigating its use against T. cruzi.
Collapse
Affiliation(s)
- Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
| | - Nuria Cortes-Serra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
| | - Julian Sherman
- Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA; (J.S.); (A.R.)
| | - Ana Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA; (J.S.); (A.R.)
| | - Juan M. Bustamante
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA;
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
| | - Maria-Jesus Pinazo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
- Correspondence: (M.-J.P.); (J.A.-P.); Tel.: +1-0034-932275400 (ext. 1802) (M.-J.P.); +1-0034-932275400 (ext. 4569) (J.A.-P.)
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, 08036 Barcelona, Spain; (N.M.-P.); (N.C.-S.); (J.G.)
- Correspondence: (M.-J.P.); (J.A.-P.); Tel.: +1-0034-932275400 (ext. 1802) (M.-J.P.); +1-0034-932275400 (ext. 4569) (J.A.-P.)
| |
Collapse
|
5
|
Silva RCMC, Travassos LH, Paiva CN, Bozza MT. Heme oxygenase-1 in protozoan infections: A tale of resistance and disease tolerance. PLoS Pathog 2020; 16:e1008599. [PMID: 32692767 PMCID: PMC7373268 DOI: 10.1371/journal.ppat.1008599] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heme oxygenase (HO-1) mediates the enzymatic cleavage of heme, a molecule with proinflammatory and prooxidant properties. HO-1 activity deeply impacts host capacity to tolerate infection through reduction of tissue damage or affecting resistance, the ability of the host to control pathogen loads. In this Review, we will discuss the contribution of HO-1 in different and complex protozoan infections, such as malaria, leishmaniasis, Chagas disease, and toxoplasmosis. The complexity of these infections and the pleiotropic effects of HO-1 constitute an interesting area of study and an opportunity for drug development.
Collapse
Affiliation(s)
- Rafael C. M. C. Silva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leonardo H. Travassos
- Laboratório de Imunoreceptores e Sinalização, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia N. Paiva
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo T. Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
6
|
Horta AL, Figueiredo VP, Leite ALJ, Costa GDP, Menezes APDJ, Ramos CDO, Pedrosa TCF, Bezerra FS, Vieira PMDA, Talvani A. The β-blocker carvedilol and the benznidazole modulate the cardiac immune response in the acute infection induced by Colombian strain of the Trypanosoma cruzi. Mem Inst Oswaldo Cruz 2018; 113:e180271. [PMID: 30365644 PMCID: PMC6193372 DOI: 10.1590/0074-02760180271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The infection led by Trypanosoma cruzi persists in mammalian tissues causing an inflammatory imbalance. Carvedilol (Cv), a non-selective beta blocker drug indicated to treat heart failure and antihypertensive has shown to promote antioxidant and immunomodulatory properties which might improve the inflammation induced by T. cruzi. OBJECTIVES Evaluate the role of Cv on the inflammatory response of C57BL/6 mice acutely infected with the Colombian strain of T. cruzi. METHODS Animals were infected with the Colombian strain of T. cruzi and treated with Cv (25 mg/kg/day), benznidazole (Bz) (100 mg/kg/day) or their combination. On the 28th day of infection and 23 days of treatment, the euthanasia occurred, and the heart preserved for histopathological, oxidative stress (SOD, catalase, TBARs, carbonylated proteins) and plasma (CCL2, CCL5, TNF, IL-10) analyses. Parasitaemia and survival were assessed along the infection. FINDINGS Cv decreased TBARs, but increased the mortality rate, the parasitaemia and the levels of CCL2, CCL5, catalase and the inflammatory infiltrate in the cardiac tissue. Bz led the reduction of the inflammatory infiltrate and circulating levels of oxidative stress and inflammatory mediators in the infected mice. MAIN CONCLUSIONS Our data suggest that Cv, in this experimental model using the Colombian strain of T. cruzi, caused damage to the host.
Collapse
Affiliation(s)
- Aline Luciano Horta
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Vivian Paulino Figueiredo
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Ana Luisa Junqueira Leite
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Guilherme de Paula Costa
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Ana Paula de Jesus Menezes
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Camila de Oliveira Ramos
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Tamiles Caroline Fernandes Pedrosa
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - Frank Silva Bezerra
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Saúde e Nutrição, Ouro Preto, MG, Brasil
| | - Paula Melo de Abreu Vieira
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil
| | - André Talvani
- Universidade Federal de Ouro Preto, Departamento de Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Ciências Biológicas, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Saúde e Nutrição, Ouro Preto, MG, Brasil.,Universidade Federal de Ouro Preto, Programa de Pós-Graduação em Biomas Tropicais, Ouro Preto, MG, Brasil
| |
Collapse
|
7
|
Barreto de Albuquerque J, Silva Dos Santos D, Stein JV, de Meis J. Oral Versus Intragastric Inoculation: Similar Pathways of Trypanosoma cruzi Experimental Infection? From Target Tissues, Parasite Evasion, and Immune Response. Front Immunol 2018; 9:1734. [PMID: 30100907 PMCID: PMC6072848 DOI: 10.3389/fimmu.2018.01734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022] Open
Abstract
Currently, oral infection is the most frequent transmission mechanism of Chagas disease in Brazil and others Latin American countries. This transmission pathway presents increased mortality rate in the first 2 weeks, which is higher than the calculated mortality after the biting of infected insect vectors. Thus, the oral route of Trypanosoma cruzi infection, and the consequences in the host must be taken into account when thinking on the mechanisms underlying the natural history of the disease. Distinct routes of parasite entry may differentially affect immune circuits, stimulating regional immune responses that impact on the overall profile of the host protective immunity. Experimental studies related to oral infection usually comprise inoculation in the mouth (oral infection, OI) or gavage (gastrointestinal infection, GI), being often considered as similar routes of infection. Hence, establishing a relationship between the inoculation site (OI or GI) with disease progression and the mounting of T. cruzi-specific regional immune responses is an important issue to be considered. Here, we provide a discussion on studies performed in OI and GI in experimental models of acute infections, including T. cruzi infection.
Collapse
Affiliation(s)
| | - Danielle Silva Dos Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jens V Stein
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Barreto-de-Albuquerque J, Silva-dos-Santos D, Pérez AR, Berbert LR, de Santana-van-Vliet E, Farias-de-Oliveira DA, Moreira OC, Roggero E, de Carvalho-Pinto CE, Jurberg J, Cotta-de-Almeida V, Bottasso O, Savino W, de Meis J. Trypanosoma cruzi Infection through the Oral Route Promotes a Severe Infection in Mice: New Disease Form from an Old Infection? PLoS Negl Trop Dis 2015; 9:e0003849. [PMID: 26090667 PMCID: PMC4474863 DOI: 10.1371/journal.pntd.0003849] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/26/2015] [Indexed: 11/16/2022] Open
Abstract
Oral transmission of Chagas disease has been documented in Latin American countries. Nevertheless, significant studies on the pathophysiology of this form of infection are largely lacking. The few studies investigating oral route infection disregard that inoculation in the oral cavity (Oral infection, OI) or by gavage (Gastrointestinal infection, GI) represent different infection routes, yet both show clear-cut parasitemia and heart parasitism during the acute infection. Herein, BALB/c mice were subjected to acute OI or GI infection using 5x104 culture-derived Trypanosoma cruzi trypomastigotes. OI mice displayed higher parasitemia and mortality rates than their GI counterparts. Heart histopathology showed larger areas of infiltration in the GI mice, whereas liver lesions were more severe in the OI animals, accompanied by higher Alanine Transaminase and Aspartate Transaminase serum contents. A differential cytokine pattern was also observed because OI mice presented higher pro-inflammatory cytokine (IFN-γ, TNF) serum levels than GI animals. Real-time PCR confirmed a higher TNF, IFN-γ, as well as IL-10 expression in the cardiac tissue from the OI group compared with GI. Conversely, TGF-β and IL-17 serum levels were greater in the GI animals. Immunolabeling revealed macrophages as the main tissue source of TNF in infected mice. The high mortality rate observed in the OI mice paralleled the TNF serum rise, with its inhibition by an anti-TNF treatment. Moreover, differences in susceptibility between GIversusOI mice were more clearly related to the host response than to the effect of gastric pH on parasites, since infection in magnesium hydroxide-treated mice showed similar results. Overall, the present study provides conclusive evidence that the initial site of parasite entrance critically affects host immune response and disease outcome. In light of the occurrence of oral Chagas disease outbreaks, our results raise important implications in terms of the current view of the natural disease course and host-parasite relationship. Chagas disease caused by the protozoan Trypanosoma cruzi is endemic in Latin America and a neglected tropical disease, which affects 6–7 million people worldwide. Currently, oral transmission is the most frequent pathway of infection in Brazil but also occurs in other endemic countries. This important infection route is underestimated and understudied. Here, we demonstrate that the site of parasite entrance, in the oral cavity (OI), as observed in natural infection, or directly to the gastrointestinal tract (GI), differentially affects the host-immune response and mortality. OI promotes a severe acute disease, elevated parasitemia and TNF mediated mortality. OI showed intense hepatitis and mild heart damage. Interestingly, GI mice presented mild disease, along with less circulating TNF and higher TGF-β and IL-17 serum contents. GI animals showed mild liver damage and intense heart inflammation. Our study is a pioneer work that analyzes the features of two distinct routes of oral infection. In addition, it provides new clues for Chagas pathology and stimulates background for the elucidation of disease features in orally exposed populations.
Collapse
Affiliation(s)
| | - Danielle Silva-dos-Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Rosa Pérez
- Immunology Institute, Faculty of Medical Science, National University of Rosario, Rosario, Argentina
| | - Luiz Ricardo Berbert
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Otacilio C. Moreira
- Laboratory on Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eduardo Roggero
- Immunology Institute, Faculty of Medical Science, National University of Rosario, Rosario, Argentina
| | | | - José Jurberg
- National and International Laboratory on Triatomine Taxonomy, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Oscar Bottasso
- Immunology Institute, Faculty of Medical Science, National University of Rosario, Rosario, Argentina
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Juliana de Meis
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
9
|
Pentoxifylline reverses chronic experimental Chagasic cardiomyopathy in association with repositioning of abnormal CD8+ T-cell response. PLoS Negl Trop Dis 2015; 9:e0003659. [PMID: 25789471 PMCID: PMC4366205 DOI: 10.1371/journal.pntd.0003659] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/27/2015] [Indexed: 12/22/2022] Open
Abstract
Background Chronic chagasic cardiomyopathy (CCC), the main clinical sign of Chagas disease, is associated with systemic CD8+ T-cell abnormalities and CD8-enriched myocarditis occurring in an inflammatory milieu. Pentoxifylline (PTX), a phosphodiesterase inhibitor, has immunoregulatory and cardioprotective properties. Here, we tested PTX effects on CD8+ T-cell abnormalities and cardiac alterations using a model of experimental Chagas’ heart disease. Methodology/Principal Findings C57BL/6 mice chronically infected by the Colombian Trypanosoma cruzi strain and presenting signs of CCC were treated with PTX. The downmodulation of T-cell receptors on CD8+ cells induced by T. cruzi infection was rescued by PTX therapy. Also, PTX reduced the frequency of CD8+ T-cells expressing activation and migration markers in the spleen and the activation of blood vessel endothelial cells and the intensity of inflammation in the heart tissue. Although preserved interferon-gamma production systemically and in the cardiac tissue, PTX therapy reduced the number of perforin+ cells invading this tissue. PTX did not alter parasite load, but hampered the progression of heart injury, improving connexin 43 expression and decreasing fibronectin overdeposition. Further, PTX reversed electrical abnormalities as bradycardia and prolonged PR, QTc and QRS intervals in chronically infected mice. Moreover, PTX therapy improved heart remodeling since reduced left ventricular (LV) hypertrophy and restored the decreased LV ejection fraction. Conclusions/Significance PTX therapy ameliorates critical aspects of CCC and repositioned CD8+ T-cell response towards homeostasis, reinforcing that immunological abnormalities are crucially linked, as cause or effect, to CCC. Therefore, PTX emerges as a candidate to treat the non-beneficial immune deregulation associated with chronic Chagas' heart disease and to improve prognosis. Chronic chagasic cardiomyopathy (CCC) is the main clinical manifestation of Chagas disease (CD), a neglected illness caused by the protozoan parasite Trypanosoma cruzi. More than hundred years after its discovery, CD continues to be a public health problem and millions of chronically infected people wait for an effective treatment. Chagasic cardiomyopathy is associated with CD8+ T-cell-enriched myocarditis, fibrosis and cardiac electrical and structural abnormalities, frequently progressing to heart failure. Presently, the available therapies only mitigate symptoms of CCC. Abnormalities in CD8+ T-cell compartment are present in CCC patients. Recently, we described the importance of CD8+ T-cells in the pathogenesis of CCC. Therefore, our proposal was to interfere with abnormalities of CD8+ T-cells glimpsing a better prognosis for CCC. Using PTX, an affordable drug with immunomodulatory properties on T-cells and cardioprotective effects in non-infections disease, we bring a therapeutic candidate for treating CCC. PTX therapy downmodulated detrimental CD8+ T-cells and promoted T. cruzi-specific interferon-gamma-producing T-cells. Importantly, chronic chagasic electrical and echocardiographic alterations were reversed by PTX therapy. Future studies may test the use of PTX combined with trypanocidal drug or as a vaccine adjuvant to improve the quality of life of chronic CD patients.
Collapse
|
10
|
Rodríguez-Angulo H, Thomas LE, Castillo E, Cárdenas E, Mogollón F, Mijares A. Role of TNF in sickness behavior and allodynia during the acute phase of Chagas' disease. Exp Parasitol 2013; 134:422-9. [PMID: 23684908 DOI: 10.1016/j.exppara.2013.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/19/2012] [Accepted: 05/06/2013] [Indexed: 12/16/2022]
Abstract
Chagas disease, caused by the intracellular protozoan Trypanosoma cruzi, is associated with inflammation, discomfort and pain during the acute phase. The influence of TNF-α (tumor necrosis factor) in this disease outcome is controversial. In this way, the aim of this work was to determine the role of the TNF-α blocker etanercept in the pain, discomfort, and survival during the Chagas' acute phase of mice experimentally infected with a wild virulent strain of T. cruzi. The infection with this wild strain was responsible for a severe visceral inflammation and said parasite showed a tropism in peritoneal fluid cells. Etanercept was able to restore spontaneous vertical and horizontal activities during the second week after infection and to abolish mechanical allodynia during the first week after infection. Finally, etanercept delayed the mortality without any effect on the parasitemia rates. This is the first report that correlates sickness behavior and allodynia with TNF-α and suggests that this cytokine may play an important role in the physiopathology of the acute phase.
Collapse
Affiliation(s)
- H Rodríguez-Angulo
- Lab. de Fisiología de Parásitos, Centro de Biofísica y Bioquímica, IVIC, Caracas 1020A, Venezuela
| | | | | | | | | | | |
Collapse
|
11
|
Different infective forms trigger distinct immune response in experimental Chagas disease. PLoS One 2012; 7:e32912. [PMID: 22412949 PMCID: PMC3296760 DOI: 10.1371/journal.pone.0032912] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 02/04/2012] [Indexed: 11/26/2022] Open
Abstract
Although metacyclic and blood trypomastigotes are completely functional in relation to parasite-host interaction and/or target cell invasion, they differ in the molecules present on the surface. Thus, aspects related to the variability that the forms of T. cruzi interacts with host cells may lead to fundamental implications on the immune response against this parasite and, consequently, the clinical evolution of Chagas disease. We have shown that BT infected mice presented higher levels of parasitemia during all the acute phase of infection. Moreover, the infection with either MT or BT forms resulted in increased levels of total leukocytes, monocytes and lymphocytes, specifically later for MT and earlier for BT. The infection with BT forms presented earlier production of proinflammatory cytokine TNF-α and later of IFN-γ by both T cells subpopulations. This event was accompanied by an early cardiac inflammation with an exacerbation of this process at the end of the acute phase. On the other hand, infection with MT forms result in an early production of IFN-γ, with subsequent control in the production of this cytokine by IL-10, which provided to these animals an immunomodulatory profile in the end of the acute phase. These results are in agreement with what was found for cardiac inflammation where animals infected with MT forms showed intense cardiac inflammation later at infection, with a decrease in the same at the end of this phase. In summary, our findings emphasize the importance of taking into account the inoculums source of T. cruzi, since vectorial or transfusional routes of T. cruzi infection may trigger distinct parasite-host interactions during the acute phase that may influence relevant biological aspects of chronic Chagas disease.
Collapse
|
12
|
Lannes-Vieira J, Pereira IR, Vinagre NF, Arnez LEA. TNF-α and TNFR in Chagas disease: from protective immunity to pathogenesis of chronic cardiomyopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:221-30. [PMID: 21153326 DOI: 10.1007/978-1-4419-6612-4_23] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Fiocruz, Av. Brasil 4365, Rio de Janeiro 21045-900, RJ, Brazil.
| | | | | | | |
Collapse
|
13
|
Kroll-Palhares K, Silvério JC, Silva AAD, Michailowsky V, Marino AP, Silva NM, Carvalho CME, Pinto LMDO, Gazzinelli RT, Lannes-Vieira J. TNF/TNFR1 signaling up-regulates CCR5 expression by CD8+ T lymphocytes and promotes heart tissue damage during Trypanosoma cruzi infection: beneficial effects of TNF-alpha blockade. Mem Inst Oswaldo Cruz 2008; 103:375-85. [PMID: 18660993 DOI: 10.1590/s0074-02762008000400011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/09/2008] [Indexed: 12/28/2022] Open
Abstract
In Chagas disease, understanding how the immune response controls parasite growth but also leads to heart damage may provide insight into the design of new therapeutic strategies. Tumor necrosis factor-alpha (TNF-alpha) is important for resistance to acute Trypanosoma cruzi infection; however, in patients suffering from chronic T. cruzi infection, plasma TNF-alpha levels correlate with cardiomyopathy. Recent data suggest that CD8-enriched chagasic myocarditis formation involves CCR1/CCR5-mediated cell migration. Herein, the contribution of TNF-alpha, especially signaling through the receptor TNFR1/p55, to the pathophysiology of T. cruzi infection was evaluated with a focus on the development of myocarditis and heart dysfunction. Colombian strain-infected C57BL/6 mice had increased frequencies of TNFR1/p55+ and TNF-alpha+ splenocytes. Although TNFR1-/- mice exhibited reduced myocarditis in the absence of parasite burden, they succumbed to acute infection. Similar to C57BL/6 mice, Benznidazole-treated TNFR1-/- mice survived acute infection. In TNFR1-/- mice, reduced CD8-enriched myocarditis was associated with defective activation of CD44+CD62Llow/- and CCR5+ CD8+ lymphocytes. Also, anti-TNF-alpha treatment reduced the frequency of CD8+CCR5+ circulating cells and myocarditis, though parasite load was unaltered in infected C3H/HeJ mice. TNFR1-/- and anti-TNF-alpha-treated infected mice showed regular expression of connexin-43 and reduced fibronectin deposition, respectively. Furthermore, anti-TNF-alpha treatment resulted in lower levels of CK-MB, a cardiomyocyte lesion marker. Our results suggest that TNF/TNFR1 signaling promotes CD8-enriched myocarditis formation and heart tissue damage, implicating the TNF/TNFR1 signaling pathway as a potential therapeutic target for control of T. cruzi-elicited cardiomyopathy.
Collapse
Affiliation(s)
- Karina Kroll-Palhares
- Laboratório de Auto-Imunidade e Imuno-Regulação, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|