1
|
Sevinc F, Zhou M, Cao S, Ceylan O, Ulucesme MC, Ozubek S, Aktas M, Xuan X. Babesia ovis secreted antigen-1 is a diagnostic marker during the active Babesia ovis infections in sheep. Front Cell Infect Microbiol 2023; 13:1238369. [PMID: 37662014 PMCID: PMC10468981 DOI: 10.3389/fcimb.2023.1238369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Ovine babesiosis caused by Babesia ovis is an economically significant disease. Recently, a few B. ovis-specific proteins, including recombinant B. ovis secreted antigen-1 (rBoSA1), have been identified. Immunological analyses revealed that rBoSA1 resides within the cytoplasm of infected erythrocytes and exhibits robust antigenic properties for detecting anti-B. ovis antibodies. This protein is released into the bloodstream during the parasite's development. It would be possible to diagnose active infections by detecting this secretory protein. For this purpose, a rBoSA1-specific polyclonal antibody-based sandwich ELISA was optimized in this study. Blood samples taken from the naturally (n: 100) and experimentally (n: 15) infected sheep were analyzed for the presence of native BoSA1. The results showed that native BoSA1 was detectable in 98% of naturally infected animals. There was a positive correlation between parasitemia level in microscopy and protein density in sandwich ELISA. Experimentally infected animals showed positive reactions from the first or second day of inoculations. However, experimental infections carried out by Rhipicephalus bursa ticks revealed the native BoSA1 was detectable from the 7th day of tick attachment when the parasite began to be seen microscopically. Sandwich ELISA was sensitive enough to detect rBoSA1 protein at a 1.52 ng/ml concentration. Additionally, no serological cross-reactivity was observed between animals infected with various piroplasm species, including Babesia bovis, B. bigemina, B. caballi, B. canis, B. gibsoni, Theileria equi, and T. annulata. Taken collectively, the findings show that the rBoSA1-specific polyclonal antibody-based sandwich ELISA can be successfully used to diagnose clinical B. ovis infections in sheep at the early stage.
Collapse
Affiliation(s)
- Ferda Sevinc
- Department of Parasitology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Türkiye
| | - Mo Zhou
- Jiangsu Key Laboratory for High-tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Shinuo Cao
- Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Onur Ceylan
- Department of Parasitology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Türkiye
| | - Mehmet Can Ulucesme
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Türkiye
| | - Sezayi Ozubek
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Türkiye
| | - Munir Aktas
- Department of Parasitology, Faculty of Veterinary Medicine, University of Firat, Elazig, Türkiye
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
2
|
Advances in Babesia Vaccine Development: An Overview. Pathogens 2023; 12:pathogens12020300. [PMID: 36839572 PMCID: PMC9962624 DOI: 10.3390/pathogens12020300] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Babesiosis is a tick-borne zoonotic disease, which is caused by various species of intracellular Babesia parasite. It is a problem not only for the livestock industry but also for global health. Significant global economic losses, in particular in cattle production, have been observed. Since the current preventive measures against babesiosis are insufficient, there is increasing pressure to develop a vaccine. In this review, we survey the achievements and recent advances in the creation of antibabesiosis vaccine. The scope of this review includes the development of a vaccine against B. microti, B. bovis, B. bigemina, B. orientalis and B. divergens. Here, we present different strategies in their progress and evaluation. Scientists worldwide are still trying to find new targets for a vaccine that would not only reduce symptoms among animals but also prevent the further spread of the disease. Molecular candidates for the production of a vaccine against various Babesia spp. are presented. Our study also describes the current prospects of vaccine evolution for successful Babesia parasites elimination.
Collapse
|
3
|
Teixeira AAR, Carnero LR, Kuramoto A, Tang FHF, Gomes CH, Pereira NB, de Oliveira LC, Garrini R, Monteiro JS, Setubal JC, Sabino EC, Pasqualini R, Colli W, Arap W, Alves MJM, Cunha-Neto E, Giordano RJ. A refined genome phage display methodology delineates the human antibody response in patients with Chagas disease. iScience 2021; 24:102540. [PMID: 34142048 PMCID: PMC8185243 DOI: 10.1016/j.isci.2021.102540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/30/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022] Open
Abstract
Large-scale mapping of antigens and epitopes is pivotal for developing immunotherapies but challenging, especially for eukaryotic pathogens, owing to their large genomes. Here, we developed an integrated platform for genome phage display (gPhage) to show that unbiased libraries of the eukaryotic parasite Trypanosoma cruzi enable the identification of thousands of antigens recognized by serum samples from patients with Chagas disease. Because most of these antigens are hypothetical proteins, gPhage provides evidence of their expression during infection. We built and validated a comprehensive map of Chagas disease antibody response to show how linear and putative conformation epitopes, many rich in repetitive elements, allow the parasite to evade a buildup of neutralizing antibodies directed against protein domains that mediate infection pathogenesis. Thus, the gPhage platform is a reproducible and effective tool for rapid simultaneous identification of epitopes and antigens, not only in Chagas disease but perhaps also in globally emerging/reemerging acute pathogens. Genomic shotgun phage display (gPhage) of eukaryotes is feasible and promising. gPhage allows rapid antigen ID and epitope mapping, including 3D structures. Conformation epitopes can be identified and validated by using the gPhage platform. Most Chagas disease antigens are hypothetical proteins rich in repetitive elements.
Collapse
Affiliation(s)
- André Azevedo Reis Teixeira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Luis Rodriguez Carnero
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Andréia Kuramoto
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, SP, 05403-000, Brazil
| | - Fenny Hui Fen Tang
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.,Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Carlos Hernique Gomes
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Natalia Bueno Pereira
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, SP, 05403-000, Brazil
| | - Léa Campos de Oliveira
- Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo, SP, 05403-000, Brazil
| | - Regina Garrini
- Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo, SP, 05403-000, Brazil
| | - Jhonatas Sirino Monteiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - João Carlos Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Ester Cerdeira Sabino
- Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo, SP, 05403-000, Brazil
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.,Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Walter Colli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.,Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Maria Júlia Manso Alves
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Edécio Cunha-Neto
- Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, SP, 05403-000, Brazil.,Division of Clinical Immunology and Allergy, University of São Paulo School of Medicine, São Paulo, SP 01246-903, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
| | - Ricardo José Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.,Institute for Investigation in Immunology (iii), INCT, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Florin-Christensen M, Suarez CE, Rodriguez AE, Flores DA, Schnittger L. Vaccines against bovine babesiosis: where we are now and possible roads ahead. Parasitology 2014; 141:1-30. [PMID: 25068315 DOI: 10.1017/s0031182014000961] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SUMMARY Bovine babesiosis caused by the tick-transmitted haemoprotozoans Babesia bovis, Babesia bigemina and Babesia divergens commonly results in substantial cattle morbidity and mortality in vast world areas. Although existing live vaccines confer protection, they have considerable disadvantages. Therefore, particularly in countries where large numbers of cattle are at risk, important research is directed towards improved vaccination strategies. Here a comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented. In addition, pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions, as well as the protective immunity against infection. The mining of available parasite genomes is continuously enlarging the array of potential vaccine candidates and, additionally, the recent development of a transfection tool for Babesia can significantly contribute to vaccine design. However, the complication and high cost of vaccination trials hinder Babesia vaccine research, and have so far seriously limited the systematic examination of antigen candidates and prevented an in-depth testing of formulations using different immunomodulators and antigen delivery systems.
Collapse
Affiliation(s)
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology,Washington State University,Pullman, WA 99164-7040,USA
| | - Anabel E Rodriguez
- Instituto de Patobiologia,CICVyA, INTA-Castelar, 1686 Hurlingham,Argentina
| | - Daniela A Flores
- Instituto de Patobiologia,CICVyA, INTA-Castelar, 1686 Hurlingham,Argentina
| | | |
Collapse
|
5
|
Genetic conservation of potentially immunogenic proteins among Brazilian isolates of Babesia bovis. Vet Parasitol 2012; 187:548-52. [PMID: 22309798 DOI: 10.1016/j.vetpar.2012.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/09/2012] [Accepted: 01/11/2012] [Indexed: 11/22/2022]
Abstract
Bovine babesiosis caused by Babesia bovis remains an important constraint for the development of cattle industries worldwide. Effective control can be achieved by vaccination with live attenuated phenotypes of the parasite. However, these vaccines have a number of drawbacks, which justifies the search for better, safer vaccines. In recent years, a number of parasite proteins with immunogenic potential have been discovered. However, there is little information on the genetic conservation of these proteins among different parasite isolates, which hinders their assessment as immunogens. The aim of the present study was to evaluate the conservation of the genes ama-1, acs-1, rap-1, trap, p0 and msa2c among five Brazilian isolates of B. bovis. Through polymerase chain reaction, genetic sequencing and bioinformatics analysis of the genes, a high degree of conservation (98-100%) was found among Brazilian isolates of B. bovis and the T2Bo isolate. Thus, these genes are worth considering as viable candidates to be included in a recombinant cocktail vaccine for cattle babesiosis caused by B. bovis.
Collapse
|
6
|
He S, Yang L, Lv Z, Hu W, Cao J, Wei J, Sun X, Yang J, Zheng H, Wu Z. Molecular and functional characterization of a mortalin-like protein from Schistosoma japonicum (SjMLP/hsp70) as a member of the HSP70 family. Parasitol Res 2010; 107:955-66. [PMID: 20602114 DOI: 10.1007/s00436-010-1960-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/14/2010] [Indexed: 10/19/2022]
Abstract
Schistosomes are the causative agent of schistosomiasis. The 70-kDa heat-shock proteins (HSP70) are considered the predominant HSP family and play a key regulatory role in parasite development and pathogenesis. Based on the published sequences in Genbank/EMBL, an open-reading frame (ORF) encoding 653 amino acids (XP_002581385.1) and belonging to the Schistosoma HSP70 protein family with a molecular weight of 71.49 kDa was identified by bioinformatic analysis. Since the sequence shared 77% identity with the published full-length Homo sapiens HSP70 protein, it was named Schistosoma mortalin-like protein (MLP/Hsp70). Here, we report the molecular and functional characterization of the Schistosoma japonicum SjMLP/hsp70 as a member of the HSP70 family. The complete SjMLP/hsp70 coding sequence was amplified from a S. japonicum adult worm cDNA library by polymerase chain reaction (PCR) and subcloned into the pET28a expression vector. The purified recombinant protein, rSjMLP/hsp70, was identified as a member of 70-kDa HSP family by mass spectrometry and could be recognized by the S. japonicum-infected mouse serum. Reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting analysis revealed that SjMLP/hsp70 was widely expressed in the eggs, cercariae, schistosomula, and adult worms of S. japonicum. A thermotolerance assay showed that rSjMLP/hsp70 could protect Escherichia coli cells from heat damage. This chaperone-like activity was demonstrated by full-length SjMLP/hsp70. The detection of specific antibody levels by indirect enzyme-linked immunosorbent assay and IFN-gamma secretion of splenocytes by ELISpot assay suggested that mice immunized with SjMLP/hsp70 were able to elicit Th1-type bias immune response. The challenge-protective experiment showed that DNA vaccine of SjGST combined with SjMLP/hsp70 could induce a 31.31% reduction of worm burden and 58.59% reduction of egg burden in intestinal tissue of immunized mice. Our results imply that SjMLP/hsp70 has a potential adjuvant function and might be a vaccine candidate for schistosomiaisis, which is the first report of the expression and preliminary characterization analysis of this molecule.
Collapse
Affiliation(s)
- Sijie He
- Department of Parasitology, Zhongshan School of Medicine, SunYat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|