1
|
Leyria J, Fruttero LL, Canavoso LE. Lipids in Insect Reproduction: Where, How, and Why. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874891 DOI: 10.1007/5584_2024_809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Modern insects have inhabited the earth for hundreds of millions of years, and part of their successful adaptation lies in their many reproductive strategies. Insect reproduction is linked to a high metabolic rate that provides viable eggs in a relatively short time. In this context, an accurate interplay between the endocrine system and the nutrients synthetized and metabolized is essential to produce healthy offspring. Lipids guarantee the metabolic energy needed for egg formation and represent the main energy source consumed during embryogenesis. Lipids availability is tightly regulated by a complex network of endocrine signals primarily controlled by the central nervous system (CNS) and associated endocrine glands, the corpora allata (CA) and corpora cardiaca (CC). This endocrine axis provides hormones and neuropeptides that significatively affect tissues closely involved in successful reproduction: the fat body, which is the metabolic center supplying the lipid resources and energy demanded in egg formation, and the ovaries, where the developing oocytes recruit lipids that will be used for optimal embryogenesis. The post-genomic era and the availability of modern experimental approaches have advanced our understanding of many processes involved in lipid homeostasis; therefore, it is crucial to integrate the findings of recent years into the knowledge already acquired in the last decades. The present chapter is devoted to reviewing major recent contributions made in elucidating the impact of the CNS/CA/CC-fat body-ovary axis on lipid metabolism in the context of insect reproduction, highlighting areas of fruitful research.
Collapse
Affiliation(s)
- Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Lilián E Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina.
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina.
| |
Collapse
|
2
|
Jaremek M, Olszewski K, Chobotow J, Strachecka A. The Morphological Image of Fat Body and Tergal Gland Cells in Uninseminated Apis mellifera Queen Bees. INSECTS 2024; 15:244. [PMID: 38667374 PMCID: PMC11050307 DOI: 10.3390/insects15040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
The morphological changes in fat body cells, tergal gland cells, and the surface areas of the cell nuclei were determined in queen bees of the subspecies Apis mellifera carnica. This study focused on 1-, 8-, and 20-day-old uninseminated females kept in colonies, analyzing cells from three locations in the abdomen: the sternite, and tergites III and V. The oenocytes in the sternites were large, oval/circular with a centrally located nucleus, while in tergites III and V, they were small and triangular in the 1-day-old queens. During the first week of life, these cells in tergites III and V change their shape to oval and increase their sizes. The initially light yellow and then dark yellow granularities in the oenocytes of the fat body appear along with the advancing age of the queens. The trophocytes (sternites, tergites III and V) in the 1-day-old queens were completely filled with droplets of different sizes. In the 8- and 20-day-old queens, the number and size of the droplets decreased in the trophocytes of tergites III and V. The tergal gland cells had a centrally located cell nucleus in the 1-, 8- and 20-day-old queens. The dark granularities in these cells were visible only in the 20-day-old queens. Different morphological images of the fat body at the sternite, and tergites III and V, and the difference in the size of the oenocyte cell nuclei may indicate various functions of the fat body depending on its location. Characterization of the changes in the morphology of the fat body, taking into account its segmental character, and the tergal glands requires further research in older queens, e.g., one-year-old, brooding queens.
Collapse
Affiliation(s)
- Milena Jaremek
- Department of Invertebrate Ecophysiology and Experimental Biology, Faculty of Environmental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland;
| | - Krzysztof Olszewski
- Subdepartment of Apidology, Institute of Biological Basis of Animal Production, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Jacek Chobotow
- Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-400 Lublin, Poland;
| | - Aneta Strachecka
- Department of Invertebrate Ecophysiology and Experimental Biology, Faculty of Environmental Biology, University of Life Sciences in Lublin, Doświadczalna 50a, 20-280 Lublin, Poland;
| |
Collapse
|
3
|
Zheng J, Xu J, Zhang R, Du J, Wang H, Li J, Zhou D, Sun Y, Shen B. MicroRNA-989 targets 5-hydroxytryptamine receptor1 to regulate ovarian development and eggs production in Culex pipiens pallens. Parasit Vectors 2023; 16:326. [PMID: 37705064 PMCID: PMC10498645 DOI: 10.1186/s13071-023-05957-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Female mosquitoes need a blood meal after mating for their eggs to develop, and this behavior leads to the spread of pathogens. Therefore, understanding the molecular regulation of reproduction in female mosquitoes is essential to control mosquito vector populations. In this study, we reported that microRNA-989 (miR-989), which targets 5-HTR1 (encoding secreted 5-hydroxytryptamine receptor1), is essential for mosquito reproduction. METHODS The spatiotemporal expression profile of miR-989 was detected using quantitative real-time reverse transcription PCR (RT-qPCR). miR-989 antagomirs and antagomir-negative control (NC) were designed and synthesized to knock down the expression of endogenous miR-989 in female mosquitoes. RNA sequencing was used to analyze the ovarian response to miR-989 deletion. The targets of miR-989 were predicted and confirmed using RNAhybrid and dual-luciferase assays. RESULTS miR-989 is exclusively expressed in female mosquito ovaries and responds to blood feeding. Injection of the miR-989 antagomir resulted in smaller ovaries and reduced egg production. 5-HTR1 was demonstrated as a target of miR-989. The deletion of miR-989 contributed to the upregulation of 5-HTR1 expression. Knockdown of 5-HTR1 rescued the adverse egg production caused by miR-989 silencing. Thus, miR-989 might play an essential role in female reproduction by targeting 5-HTR1. CONCLUSIONS We found that miR-989 targets 5-HTR1 and participates in the regulation of reproduction in female mosquitoes. These findings expand our understanding of reproduction-related miRNAs and promote new control strategies for mosquitoes.
Collapse
Affiliation(s)
- Junnan Zheng
- Department of Clinical Laboratory, Huai'an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an, 223001, Jiangsu, People's Republic of China
| | - Jingwei Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Ruiming Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jiajia Du
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Huan Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Jinze Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Moura AS, Costa-da-Silva AL, Peixoto PS, Maciel C, Cardoso AF. Vitellogenin genes are transcribed in Culex quinquefasciatus ovary. Mem Inst Oswaldo Cruz 2023; 118:e220143. [PMID: 37466532 PMCID: PMC10368008 DOI: 10.1590/0074-02760220143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 05/22/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Culex quinquefasciatus, a cosmopolitan, domestic, and highly anthropophilic mosquito, is a vector of pathogenic arboviruses such as West Nile virus and Rift Valley virus, as well as lymphatic filariasis. The current knowledge on its reproductive physiology regarding vitellogenin expression in different tissues is still limited. OBJECTIVES In this study, we analysed the transcriptional profiles of vitellogenin genes in the fat body and ovaries of C. quinquefasciatus females during the first gonotrophic cycle. METHODS C. quinquefasciatus ovaries and/or fat bodies were dissected in different times during the first gonotrophic cycle and total RNA was extracted and used for reverse transcription polymerase chain reaction, quantitative real time-PCR, and in situ hybridisation. FINDINGS We confirmed the classical descriptions of the vitellogenic process in mosquitoes by verifying that vitellogenin genes are transcribed in the fat bodies of C. quinquefasciatus females. Using RNA in situ hybridisation approach, we showed that vitellogenin genes are also transcribed in developing ovaries, specifically by the follicle cells. MAIN CONCLUSIONS This is the first time that vitellogenin transcripts are observed in mosquito ovaries. Studies to determine if Vg transcripts are translated into proteins and their contribution to the reproductive success of the mosquito need to be further investigated.
Collapse
Affiliation(s)
- Alexandre S Moura
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| | - André Luis Costa-da-Silva
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
- Florida International University, Sciences Institute, Department of Biological Sciences & Biomolecular, Miami, FL, USA
| | - Pedro S Peixoto
- Universidade de São Paulo, Instituto de Matemática e Estatística, Departamento de Matemática Aplicada, São Paulo, SP, Brasil
| | - Ceres Maciel
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
- Universidade do Estado de Mato Grosso, Departamento de Ciências Biológicas, Tangará da Serra, MT, Brasil
| | - André F Cardoso
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
- Universidade do Estado de Mato Grosso, Departamento de Ciências Biológicas, Tangará da Serra, MT, Brasil
| |
Collapse
|
5
|
Janelt K, Jezierska M, Poprawa I. The female reproductive system and oogenesis in Thulinius ruffoi (Tardigrada, Eutardigrada, Isohypsibiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 50:53-63. [PMID: 31004762 DOI: 10.1016/j.asd.2019.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
In this study, we describe the female reproductive system organization and oogenesis in the eutardigrade Thulinius ruffoi. Light, confocal and electron microscopy was used in this study. During oogenesis, three phases can be distinguished: previtellogenesis, vitellogenesis, and choriogenesis. Germ-line cells form cell clusters in which the cells are connected by intercellular (cytoplasmic) bridges. These structures are crucial for delivering the yolk materials, macromolecules, ribosomes, and organelles to the developing oocyte. Vitellogenesis is of a mixed type. Autosynthesis and heterosynthesis of the yolk material occur. Yolk precursors that have been synthesized outside the ovary are delivered to the oocyte via endocytosis. We also present data on cortical granules, and moreover, we describe the cortical reaction in tardigrades, possibly for the first time.
Collapse
Affiliation(s)
- Kamil Janelt
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| | - Marta Jezierska
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| | - Izabela Poprawa
- University of Silesia in Katowice, Department of Animal Histology and Embryology, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
6
|
Almeida F, Suesdek L. Effects of Wolbachia on ovarian apoptosis in Culex quinquefasciatus (Say, 1823) during the previtellogenic and vitellogenic periods. Parasit Vectors 2017; 10:398. [PMID: 28841917 PMCID: PMC5574119 DOI: 10.1186/s13071-017-2332-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/14/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Apoptosis is programmed cell death that ordinarily occurs in ovarian follicular cells in various organisms. In the best-studied holometabolous insect, Drosophila, this kind of cell death occurs in all three cell types found in the follicles, sometimes leading to follicular atresia and egg degeneration. On the other hand, egg development, quantity and viability in the mosquito Culex quinquefasciatus are disturbed by the infection with the endosymbiont Wolbachia. Considering that Wolbachia alters reproductive traits, we hypothesised that such infection would also alter the apoptosis in the ovarian cells of this mosquito. The goal of this study was to comparatively describe the occurrence of apoptosis in Wolbachia-infected and uninfected ovaries of Cx. quinquefasciatus during oogenesis and vitellogenesis. For this, we recorded under confocal microscopy the occurrence of apoptosis in all three cell types of the ovarian follicle. In the first five days of adult life we observed oogenesis and, after a blood meal, the initiation step of vitellogenesis. RESULTS Apoptoses in follicular cells were found at all observation times during both oogenesis and vitellogenesis, and less commonly in nurse cells and the oocyte, as well as in atretic follicles. Our results suggested that apoptosis in follicular cells occurred in greater numbers in infected mosquitoes than in uninfected ones during the second and third days of adult life and at the initiation step of vitellogenesis. CONCLUSIONS The presence of Wolbachia leads to an increase of apoptosis occurrence in the ovaries of Cx. quinquefasciatus. Future studies should investigate if this augmented apoptosis frequency is the cause of the reduction in the number of eggs laid by Wolbachia-infected females. Follicular atresia is first reported in the previtellogenic period of oogenesis. Our findings may have implications for the use of Wolbachia as a mosquito and pathogens control strategy.
Collapse
Affiliation(s)
- Fabio Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
| | - Lincoln Suesdek
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, Brazil
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Fruttero LL, Leyria J, Canavoso LE. Lipids in Insect Oocytes: From the Storage Pathways to Their Multiple Functions. Results Probl Cell Differ 2017; 63:403-434. [PMID: 28779328 DOI: 10.1007/978-3-319-60855-6_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In insect physiology, the mechanisms involved in the buildup and regulation of yolk proteins in developing oocytes have been thoroughly researched during the last three decades. Comparatively, the study of lipid metabolism in oocytes had received less attention. The importance of this issue lies in the fact that lipids make up to 40% of the dry weight of an insect egg, being the most important supply of energy for the developing embryo. Since the oocyte has a very limited capacity to synthesize lipids de novo, most of the lipids in the mature eggs arise from the circulation. The main lipid carriers in the insect circulatory system are the lipoproteins lipophorin and vitellogenin. In some species, the endocytosis of lipophorin and vitellogenin may account for about 10% of the lipids present in mature eggs. Thus, most of the lipids are transferred by a lipophorin-mediated pathway, in which the lipoprotein unloads its lipid cargo at the surface of oocytes without internalization. This chapter recapitulates the current status on lipid storage and its utilization in insect oocytes and discusses the participation of key factors including lipoproteins, transfer proteins, lipolytic enzymes, and dynamic organelles such as lipid droplets. The new findings in the field of lipophorin receptors are presented in the context of lipid accumulation during egg maturation, and the roles of lipids beyond energy source are summarized from the perspective of oogenesis and embryogenesis. Finally, prospective and fruitful areas of future research are suggested.
Collapse
Affiliation(s)
- Leonardo L Fruttero
- Instituto do Cerebro (InsCer). Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jimena Leyria
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina
| | - Lilián E Canavoso
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, CP 5000, Argentina.
| |
Collapse
|
8
|
Two cathepsins B are responsible for the yolk protein hydrolysis in Culex quinquefasciatus. PLoS One 2015; 10:e0118736. [PMID: 25710877 PMCID: PMC4339980 DOI: 10.1371/journal.pone.0118736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/20/2015] [Indexed: 11/19/2022] Open
Abstract
Despite the established role of Culex quinquefasciatus as a vector of various neurotropic viruses, such as the Rift Valley and West Nile viruses, as well as lymphatic filariasis, little is known regarding the organism’s reproductive physiology. As in other oviparous animals, vitellogenin, the most important source of nutrients for the embryo development, is digested by intracellular proteases. Using mass spectrometry, we have identified two cathepsin B homologues partially purified by self-proteolysis of Cx. quinquefasciatus total egg extract. The transcriptional profile of these two cathepsin B homologues was determined by quantitative RT-PCR, and the enzymatic activity associated with the peptidase was determined in ovaries after female engorgement. According to the VectorBase (vectorbase.org) annotation, both cathepsin B homologues shared approximately 66% identity in their amino acid sequences. The two cathepsin B genes are expressed simultaneously in the fat body of the vitellogenic females, and enzymatic activity was detected within the ovaries, suggesting an extra-ovarian origin. Similar to the transcriptional profile of vitellogenin, cathepsin B transcripts were shown to accumulate post-blood meal and reached their highest expression at 36 h PBM. However, while vitellogenin expression decreased drastically at 48 h PBM, the expression of the cathepsins increased until 84 h PBM, at which time the females of our colony were ready for oviposition. The similarity between their transcriptional profiles strongly suggests a role for the cathepsin B homologues in vitellin degradation.
Collapse
|
9
|
de Assis WA, Malta J, Pimenta PFP, Ramalho-Ortigão JM, Martins GF. The characterization of the fat bodies and oenocytes in the adult females of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:501-9. [PMID: 24863740 DOI: 10.1016/j.asd.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
The fat body (FB) is responsible for the storage and synthesis of the majority of proteins and metabolites secreted into the hemolymph. Oenocytes are responsible for lipid processing and detoxification. The FB is distributed throughout the insect body cavity and organized as peripheral and perivisceral portions in the abdomen, with trophocytes and oenocytes attached to the peripheral portion. Here, we investigated the morphology and the subcellular changes in the peripheral and perivisceral FBs and in oenocytes of the sand flies Lutzomyia longipalpis and Phlebotomus papatasi after blood feeding. In L. longipalpis two-sized oenocytes (small and large) were identified, with both cell types displaying well-developed reticular system and smooth endoplasmic reticulum, whereas in P. papatasi, only small cells were observed. Detailed features of FBs of L. longipalpis and P. papatasi are shared either prior to or after blood feeding. The peripheral and perivisceral FBs responded to blood feeding with the development of glycogen zones and rough endoplasmic reticulum. This study provides the first detailed description of the FBs and oenocytes in sand flies, contributing significantly towards are better understanding of the biology of such important disease vectors.
Collapse
Affiliation(s)
- Wiviane Alves de Assis
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| | - Juliana Malta
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| | - Paulo Filemon P Pimenta
- Laboratório de Entomologia Médica, Instituto de Pesquisas René Rachou-CPqRR, Fundação Oswaldo Cruz (Fiocruz-MG), Avenida Augusto de Lima, 1715, Belo Horizonte, Minas Gerais CEP 30190-002, Brazil.
| | | | - Gustavo Ferreira Martins
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| |
Collapse
|
10
|
Nayduch D, Lee MB, Saski CA. The reference transcriptome of the adult female biting midge (Culicoides sonorensis) and differential gene expression profiling during teneral, blood, and sucrose feeding conditions. PLoS One 2014; 9:e98123. [PMID: 24866149 PMCID: PMC4035326 DOI: 10.1371/journal.pone.0098123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/28/2014] [Indexed: 11/18/2022] Open
Abstract
Unlike other important vectors such as mosquitoes and sandflies, genetic and genomic tools for Culicoides biting midges are lacking, despite the fact that they vector a large number of arboviruses and other pathogens impacting humans and domestic animals world-wide. In North America, female Culicoides sonorensis midges are important vectors of bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), orbiviruses that cause significant disease in livestock and wildlife. Libraries of tissue-specific transcripts expressed in response to feeding and oral orbivirus challenge in C. sonorensis have previously been reported, but extensive genome-wide expression profiling in the midge has not. Here, we successfully used deep sequencing technologies to construct the first adult female C. sonorensis reference transcriptome, and utilized genome-wide expression profiling to elucidate the genetic response to blood and sucrose feeding over time. The adult female midge unigene consists of 19,041 genes, of which less than 7% are differentially expressed during the course of a sucrose meal, while up to 52% of the genes respond significantly in blood-fed midges, indicating hematophagy induces complex physiological processes. Many genes that were differentially expressed during blood feeding were associated with digestion (e.g. proteases, lipases), hematophagy (e.g., salivary proteins), and vitellogenesis, revealing many major metabolic and biological factors underlying these critical processes. Additionally, key genes in the vitellogenesis pathway were identified, which provides the first glimpse into the molecular basis of anautogeny for C. sonorensis. This is the first extensive transcriptome for this genus, which will serve as a framework for future expression studies, RNAi, and provide a rich dataset contributing to the ultimate goal of informing a reference genome assembly and annotation. Moreover, this study will serve as a foundation for subsequent studies of genome-wide expression analyses during early orbivirus infection and dissecting the molecular mechanisms behind vector competence in midges.
Collapse
Affiliation(s)
- Dana Nayduch
- USDA-ARS, Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, Unites States of America
| | - Matthew B. Lee
- USDA-ARS, Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, Manhattan, Kansas, Unites States of America
| | - Christopher A. Saski
- Clemson University Genomics Institute, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Martins LA, Fogaça AC, Bijovsky AT, Carballar-Lejarazú R, Marinotti O, Cardoso AF. Culex quinquefasciatus storage proteins. PLoS One 2013; 8:e77664. [PMID: 24204911 PMCID: PMC3812268 DOI: 10.1371/journal.pone.0077664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
Insect storage proteins accumulate at high levels during larval development of holometabolous insects. During metamorphosis they are degraded, supplying energy and amino acids for the completion of adult development. The genome of Culex quinquefasciatus contains eleven storage protein-coding genes. Their transcripts are more abundant in larvae than in pupae and in adults. In fact, only four of these genes are transcribed in adults, two of which in blood-fed adult females but not in adult males. Transcripts corresponding to all Cx. quinquefasciatus storage proteins were detected by RT-PCR, while mass spectrometric analysis of larval and pupal proteins identified all storage proteins with the exception of one encoded by Cq LSP1.8. Our results indicate that the identified Cx. quinquefasciatus storage protein-coding genes are candidates for identifying regulatory sequences for the development of molecular tools for vector control.
Collapse
Affiliation(s)
- Larissa A. Martins
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Andréa C. Fogaça
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - A. Tania Bijovsky
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Rebeca Carballar-Lejarazú
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | - André F. Cardoso
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil
- * E-mail:
| |
Collapse
|
12
|
Zheng H, Li L, Xu Q, Zou Q, Tang B, Wang S. Gene cloning and expression patterns of two prophenoloxidases from Catantops pinguis (Orthoptera: Catantopidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:393-405. [PMID: 23507507 DOI: 10.1017/s0007485312000831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In insect, fat body plays major roles in insect innate immunity. Phenoloxidase (PO) is an important component in insect innate immunity and is necessary for acclimatization. In our study, two prophenoloxidase (PPO) subunits were obtained from fat body of Catantops pinguis (Stål). The full-length cDNA sequence of one PPO (CpPPO1) consisted of 2347 bp with an open reading frame (ORF) of 2187 bp encoding 728 amino acids, while the other subunit (CpPPO2) had a full length of 2445 bp, encoding 691 amino acids. Both the PPO gene products are predicted to possess all the structural features of other PPO members, including two putative tyrosinase copper-binding motifs with six highly conserved histidine residues and a thiolester-like motif. Tissue distribution analysis showed that both PPO mRNAs were abundantly expressed in the fat body among 11 tissues examined, and they were transiently up-regulated after Escherichia coli infection, consistent with them being immune-responsive genes. Total levels of CpPPO1 and CpPPO2 mRNA transcripts were much higher in first instar larvae and adults. A much higher transcript level of CpPPO1 was detected in several months, while there were extremely high mRNA expression levels of CpPPO2 in January, July, October, and December. The above results suggested that PPO from fat body might also bring significant function during the processes of development and acclimatization for C. pinguis.
Collapse
Affiliation(s)
- Huizhen Zheng
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | | | | | | | | | | |
Collapse
|
13
|
Almeida FD, Moura AS, Cardoso AF, Winter CE, Bijovsky AT, Suesdek L. Effects of Wolbachia on fitness of Culex quinquefasciatus (Diptera; Culicidae). INFECTION GENETICS AND EVOLUTION 2011; 11:2138-43. [DOI: 10.1016/j.meegid.2011.08.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 08/11/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
|
14
|
Martins GF, Serrão JE, Ramalho-Ortigão JM, Pimenta PFP. A comparative study of fat body morphology in five mosquito species. Mem Inst Oswaldo Cruz 2011; 106:742-7. [DOI: 10.1590/s0074-02762011000600015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 06/17/2011] [Indexed: 11/22/2022] Open
|