1
|
Lopez AD, Debnath T, Pinch M, Hansen IA. Phosphoproteomics analyses of Aedes aegypti fat body reveals blood meal-induced signaling and metabolic pathways. Heliyon 2024; 10:e40060. [PMID: 39634388 PMCID: PMC11615488 DOI: 10.1016/j.heliyon.2024.e40060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
The mosquito fat body is the principal source of yolk protein precursors (YPP) during mosquito egg development in female Aedes aegypti. To better understand the metabolic and signaling pathways involved in mosquito reproduction, we investigated changes in the mosquito fat body phosphoproteome at multiple time points after a blood meal. Using LC/MS, we identified 3570 phosphorylated proteins containing 14,551 individual phosphorylation sites. We observed protein phosphorylation changes in cellular pathways required for vitellogenesis, as well as proteins involved in primary cellular functions. Specifically, after a blood meal, proteins involved in ribosome synthesis, transcription, translation, and autophagy showed dynamic changes in their phosphorylation patterns. Our results provide new insight into blood meal-induced fat body dynamics and reveal potential proteins that can be targeted for interference with mosquito reproduction. Considering the devastating impact of mosquitoes on human health, worldwide, new approaches to control mosquitoes are urgently needed.
Collapse
Affiliation(s)
| | | | - Matthew Pinch
- New Mexico State University, Las Cruces, NM, 88003, USA
- The University of Texas at El Paso, El Paso, TX, 79968, USA
| | | |
Collapse
|
2
|
Bergmann S, Graf E, Hoffmann P, Becker SC, Stern M. Localization of nitric oxide-producing hemocytes in Aedes and Culex mosquitoes infected with bacteria. Cell Tissue Res 2024; 395:313-326. [PMID: 38240845 PMCID: PMC10904431 DOI: 10.1007/s00441-024-03862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 03/01/2024]
Abstract
Mosquitoes are significant vectors of various pathogens. Unlike vertebrates, insects rely solely on innate immunity. Hemocytes play a crucial role in the cellular part of the innate immune system. The gaseous radical nitric oxide (NO) produced by hemocytes acts against pathogens and also functions as a versatile transmitter in both the immune and nervous systems, utilizing cyclic guanosine monophosphate (cGMP) as a second messenger. This study conducted a parallel comparison of NO synthase (NOS) expression and NO production in hemocytes during Escherichia coli K12 infection in four vector species: Aedes aegypti, Aedes albopictus, Culex pipiens molestus, and Culex pipiens quinquefasciatus. Increased NOS expression by NADPH diaphorase (NADPHd) staining and NO production by immunofluorescence against the by-product L-citrulline were observed in infected mosquito hemocytes distributed throughout the abdomens. NADPHd activity and citrulline labeling were particularly found in periostial hemocytes near the heart, but also on the ventral nerve chord (VNC). Pericardial cells of Ae. aegypti and Cx. p. molestus showed increased citrulline immunofluorescence, suggesting their involvement in the immune response. Oenocytes displayed strong NADPHd and citrulline labeling independent of infection status. This comparative study, consistent with findings in other species, suggests a widespread phenomenon of NO's role in hemocyte responses during E. coli infection. Found differences within and between genera highlight the importance of species-specific investigations.
Collapse
Affiliation(s)
- Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany
| | - Emily Graf
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany
| | - Pascal Hoffmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany
| | - Stefanie C Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, 30173, Hannover, Germany.
| |
Collapse
|
3
|
Li M, Zhou Y, Cheng J, Wang Y, Lan C, Shen Y. Response of the mosquito immune system and symbiotic bacteria to pathogen infection. Parasit Vectors 2024; 17:69. [PMID: 38368353 PMCID: PMC10874582 DOI: 10.1186/s13071-024-06161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024] Open
Abstract
Mosquitoes are the deadliest animal in the word, transmitting a variety of insect-borne infectious diseases, such as malaria, dengue fever, yellow fever, and Zika, causing more deaths than any other vector-borne pathogen. Moreover, in the absence of effective drugs and vaccines to prevent and treat insect-borne diseases, mosquito control is particularly important as the primary measure. In recent decades, due to the gradual increase in mosquito resistance, increasing attention has fallen on the mechanisms and effects associated with pathogen infection. This review provides an overview of mosquito innate immune mechanisms in terms of physical and physiological barriers, pattern recognition receptors, signalling pathways, and cellular and humoral immunity, as well as the antipathogenic effects of mosquito symbiotic bacteria. This review contributes to an in-depth understanding of the interaction process between mosquitoes and pathogens and provides a theoretical basis for biological defence strategies against mosquito-borne infectious diseases.
Collapse
Affiliation(s)
- Manjin Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yang Zhou
- Nanjing Medical University, Nanjing, 211166, China
| | - Jin Cheng
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yiqing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Cejie Lan
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
| | - Yuan Shen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
4
|
Wieczorkiewicz F, Sojka J, Poprawa I. Effect of paracetamol on the storage cells of Hypsibius exemplaris—ultrastructural analysis. Zool J Linn Soc 2024; 200:258-268. [DOI: 10.1093/zoolinnean/zlad051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Tardigrades in their natural environment are exposed to various environmental toxicants, including non-steroidal anti-inflammatory drugs (NSAIDs) or antipyretics such as paracetamol. This drug can enter the animal’s body through the body wall or the digestive system with food and can affect the biology of organisms. In this paper, we report for the first time the effects of paracetamol on tardigrade storage cells. We analyzed the effects of short-term (7 days) and long-term (28 days) exposure of Hypsibius exemplaris storage cells to three paracetamol concentrations (0.2 µgxL−1, 230 µgxL−1, 1 mgxL−1). Our results showed that increasing paracetamol concentration and incubation time increases the number of damaged mitochondria in storage cells, and autophagy is activated and intensified. Moreover, the relocation of some organelles and cell deformation may indicate cytoskeleton damage.
Collapse
Affiliation(s)
- Filip Wieczorkiewicz
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice , Bankowa 9, 40-007 Katowice , Poland
| | - Julia Sojka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice , Bankowa 9, 40-007 Katowice , Poland
| | - Izabela Poprawa
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice , Bankowa 9, 40-007 Katowice , Poland
| |
Collapse
|
5
|
Kulkarni A, Delgadillo FM, Gayathrinathan S, Grajeda BI, Roy S. Current Status of Omics Studies Elucidating the Features of Reproductive Biology in Blood-Feeding Insects. INSECTS 2023; 14:802. [PMID: 37887814 PMCID: PMC10607566 DOI: 10.3390/insects14100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Female insects belonging to the genera Anopheles, Aedes, Glossina, and Rhodnius account for the majority of global vector-borne disease mortality. In response to mating, these female insects undergo several molecular, physiological, and behavioral changes. Studying the dynamic post-mating molecular responses in these insects that transmit human diseases can lead to the identification of potential targets for the development of novel vector control methods. With the continued advancements in bioinformatics tools, we now have the capability to delve into various physiological processes in these insects. Here, we discuss the availability of multiple datasets describing the reproductive physiology of the common blood-feeding insects at the molecular level. Additionally, we compare the male-derived triggers transferred during mating to females, examining both shared and species-specific factors. These triggers initiate post-mating genetic responses in female vectors, affecting not only their reproductive success but also disease transmission.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Frida M. Delgadillo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Environmental Science and Engineering Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Brian I. Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Biosciences Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
6
|
Gao Y, Yang L, Chen Y, Liu P, Zhou Y, Chen X, Gu J. Aal-circRNA-407 regulates ovarian development of Aedes albopictus, a major arbovirus vector, via the miR-9a-5p/Foxl axis. PLoS Pathog 2023; 19:e1011374. [PMID: 37146060 DOI: 10.1371/journal.ppat.1011374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/17/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023] Open
Abstract
Aedes albopictus shows a rapid global expansion and dramatic vectorial capacity for various arboviruses, thus posing a severe threat to global health. Although many noncoding RNAs have been confirmed to play functional roles in various biological processes in Ae. albopictus, the roles of circRNA remain a mystery. In the present study, we first performed high-throughput circRNA sequencing in Ae. albopictus. Then, we identified a cysteine desulfurase (CsdA) superfamily gene-originated circRNA, named aal-circRNA-407, which was the third most abundant circRNA in adult females and displayed a fat body highly expressed manifestation and blood feeding-dependent onset. SiRNA-mediated knockdown of circRNA-407 resulted in a decrease in the number of developing follicles and a reduction in follicle size post blood meal. Furthermore, we demonstrated that circRNA-407 can act as a sponge of aal-miR-9a-5p to promote the expression of its target gene Foxl and eventually regulate ovarian development. Our study is the first to report a functional circRNA in mosquitoes, expanding our current understanding of important biological roles in mosquitoes and providing an alternative genetic strategy for mosquito control.
Collapse
Affiliation(s)
- Yonghui Gao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulan Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Peiwen Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Zhou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Gregor KM, Becker SC, Hellhammer F, Schön K, Baumgärtner W, Puff C. Histochemical staining techniques in Culex pipiens and Drosophila melanogaster (Diptera) with a comparison to mammals. Vet Pathol 2022; 59:836-849. [DOI: 10.1177/03009858221088786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Insects play an important role in ecosystems. Changes in their abundance and biodiversity are of paramount interest, as there has not only been an alarming decline of insects important for ecosystem health throughout the past decades, but also an increase in insects detrimental for biomes. Furthermore, insects pose a threat to modern society as arbovirus-transmitting vectors. Therefore, detailed knowledge of insect staining characteristics could be beneficial as a basis for further studies, whether in the context of species conservation or control of insect pests. Thus, this study compared 14 histochemical stains for their usefulness in insects regarding nervous tissue, connective tissue components, mucins and polysaccharides, mineralization, and microorganisms. The study used formalin-fixed paraffin-embedded tissue sections of mammals ( Equus caballus) and 2 dipterans ( Culex pipiens biotype molestus, Drosophila melanogaster). Several histochemical stains were suitable for tissue assessment in insects and mammals, in particular for nervous tissue (Bielschowsky silver stain, luxol fast blue–cresyl violet) and polysaccharides (alcian blue, periodic acid–Schiff with and without diastase treatment, toluidine blue). Other stains proved useful for visualization of insect-specific organ characteristics such as Gomori’s reticulin stain for tracheoles in both dipteran species, Heidenhain’s azan for midgut-associated connective tissue, and von Kossa for mineral deposition in Malpighian tubules of C. pipiens biotype molestus. In summary, this study provides comparable insights into histochemical procedures in mammals and insects and their usefulness for histological assessment of C. pipiens biotype molestus and D. melanogaster.
Collapse
Affiliation(s)
- Katharina M. Gregor
- University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Stefanie C. Becker
- University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | | | - Kathleen Schön
- University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Christina Puff
- University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
8
|
Blahove MR, Carter JR. Flavivirus Persistence in Wildlife Populations. Viruses 2021; 13:v13102099. [PMID: 34696529 PMCID: PMC8541186 DOI: 10.3390/v13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral–host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.
Collapse
|
9
|
Rost-Roszkowska M, Poprawa I, Chajec Ł, Chachulska-Żymełka A, Leśniewska M, Student S. Effects of short- and long-term exposure to cadmium on salivary glands and fat body of soil centipede Lithobius forficatus (Myriapoda, Chilopoda): Histology and ultrastructure. Micron 2020; 137:102915. [PMID: 32652474 DOI: 10.1016/j.micron.2020.102915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/31/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
Abstract
Cadmium (Cd) is the most widely studied heavy metal in terms of food-chain accumulation and contamination because it can strongly affect all environments (e.g., soil, water, air). It can accumulate in different tissues and organs and can affect the organism at different levels of organization: from organs, tissues and cells though cell organelles and structures to activation of mechanisms of survival and cell death. In soil-dwelling organisms heavy metals gather in all tissues with accumulation properties: midgut, salivary glands, fat body. The aim of this study was to describe the effects of cadmium on the soil species Lithobius forficatus, mainly on two organs responsible for gathering different substances, the fat body and salivary glands, at the ultrastructural level. Changes caused by cadmium short- and long-term intoxication, connected with cell death (autophagy, apoptosis, necrosis), and the crosstalk between them, were analyzed. Adult specimens of L. forficatus were collected in a natural environment and divided into three experimental groups: C (the control group), Cd1 (cultured in soil with 80 mg/kg of CdCl2 for 12 days) and Cd2 (cultured in soil with 80 mg/kg of CdCl2 for 45 days). Transmission electron microscopy revealed ultrastructural alterations in both of the organs analyzed (reduction in the amount of reserve material, the appearance of vacuoles, etc.). Qualitative analysis using TUNEL assay revealed distinct crosstalk between autophagy and necrosis in the fat body adipocytes, while crosstalk between autophagy, apoptosis and necrosis in the salivary glands was detected in salivary glands of the centipedes examined here. We conclude that different organs in the body can react differently to the same stressor, as well as to the same concentration and time of exposure. Different mechanisms at the ultrastructural level activate different types of cell death and with different dynamics.
Collapse
Affiliation(s)
- Magdalena Rost-Roszkowska
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland.
| | - Izabela Poprawa
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Łukasz Chajec
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Alina Chachulska-Żymełka
- University of Silesia in Katowice, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Bankowa 9, 40-007, Katowice, Poland
| | - Małgorzata Leśniewska
- Adam Mickiewicz University, Department of General Zoology, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Sebastian Student
- Silesian University of Technology, Faculty of Automatic Control, Electronics and Computer Science, Akademicka 16, 44-100, Gliwice, Poland; Silesian University of Technology, Biotechnology Centre, Krzywoustego 8, 44-100, Gliwice, Poland
| |
Collapse
|
10
|
Cossolin JFS, Pereira MJB, Martínez LC, Turchen LM, Fiaz M, Bozdoğan H, Serrão JE. Cytotoxicity of Piper aduncum (Piperaceae) essential oil in brown stink bug Euschistus heros (Heteroptera: Pentatomidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:763-770. [PMID: 31254186 DOI: 10.1007/s10646-019-02072-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/16/2019] [Indexed: 05/27/2023]
Abstract
Euschistus heros (F.) (Hemiptera: Pentatomidae) is a soybean pest in Brazil, controlled with synthetic chemical insecticides, which may be harmful to the environment and humans, as well as to select pest resistant strains. The research for new pest control strategies such as the use of plant essential oils has been increased due to the selectivity and biodegradation of these molecules. The objective was to evaluate the cytological changes in the salivary glands, fat body and midgut of E. heros exposed to different concentrations of essential oil of Piper aduncum L. (Piperales: Piperaceae), which the main compounds were identified as myristicin 30.03%, aromadendrene 9.20%, dillapiole 8.43%, α-serinene 7.31%, tridecane 6.26%, γ-elemene 4.58% and o-cymene 4.20%. The essential oil of P. aduncum was toxic for E. heros with LD50 = 36.23 mg per insect and LD90 = 50.42 mg per insect. Cytological changes such as tissue disruption, increase in mitochondria population, and glycogen and lipid depletion occur in the fat body cells, whereas salivary glands and midgut are not affected by this essential oil. Results suggest that P. aduncum essential oil causes fat body cellular stress, which may compromise some physiological processes for the insect survival.
Collapse
Affiliation(s)
- Jamile F S Cossolin
- Departament of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Mônica J B Pereira
- Departament of Agronomy, Universidade Estadual do Mato Grosso, Tangará da Serra, Mato Grosso, Brazil
| | - Luis C Martínez
- Departament of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Leonardo M Turchen
- Departament of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Muhammad Fiaz
- Departament of Entomology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Hakan Bozdoğan
- Department of Plant and Animal Production, Kirsehir Vocational School of Technicial Sciences, Kirsehir Ahi Evran University, Kirsehir, Turkey
| | - José Eduardo Serrão
- Departament of General Biology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Fruttero LL, Leyria J, Moyetta NR, Ramos FO, Settembrini BP, Canavoso LE. The Fat Body of the Hematophagous Insect, Panstrongylus megistus (Hemiptera: Reduviidae): Histological Features and Participation of the β-Chain of ATP Synthase in the Lipophorin-Mediated Lipid Transfer. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5539020. [PMID: 31346627 PMCID: PMC6658809 DOI: 10.1093/jisesa/iez078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 05/09/2023]
Abstract
In insects, lipid transfer to the tissues is mediated by lipophorin, the major circulating lipoprotein, mainly through a nonendocytic pathway involving docking receptors. Currently, the role of such receptors in lipid metabolism remains poorly understood. In this work, we performed a histological characterization of the fat body of the Chagas' disease vector, Panstrongylus megistus (Burmeister), subjected to different nutritional conditions. In addition, we addressed the role of the β-chain of ATP synthase (β-ATPase) in the process of lipid transfer from lipophorin to the fat body. Fifth-instar nymphs in either fasting or fed condition were employed in the assays. Histological examination revealed that the fat body was composed by diverse trophocyte phenotypes. In the fasting condition, the cells were smaller and presented a homogeneous cytoplasmic content. The fat body of fed insects increased in size mainly due to the enlargement of lipid stores. In this condition, trophocytes contained abundant lipid droplets, and the rough endoplasmic reticulum was highly developed and mitochondria appeared elongated. Immunofluorescence assays showed that the β-ATPase, a putative lipophorin receptor, was located on the surface of fat body cells colocalizing partially with lipophorin, which suggests their interaction. No changes in β-ATPase expression were found in fasting and fed insects. Blocking the lipophorin-β-ATPase interaction impaired the lipophorin-mediated lipid transfer to the fat body. The results showed that the nutritional status of the insect influenced the morphohistological features of the tissue. Besides, these findings suggest that β-ATPase functions as a lipophorin docking receptor in the fat body.
Collapse
Affiliation(s)
- Leonardo L Fruttero
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba CP, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Jimena Leyria
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba CP, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Natalia R Moyetta
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba CP, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Fabian O Ramos
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba CP, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Beatriz P Settembrini
- Museo Argentino de Ciencias Naturales Bernardino Rivadavia (CONICET), Buenos Aires, Argentina
| | - Lilián E Canavoso
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba CP, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Corresponding author, e-mail:
| |
Collapse
|
12
|
Turgay-İzzetoğlu G, Gülmez M. Characterization of fat body cells at different developmental stages of Culex pipiens. Acta Histochem 2019; 121:460-471. [PMID: 30979430 DOI: 10.1016/j.acthis.2019.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 11/15/2022]
Abstract
The fat body, originates from mesoderm, has many metabolic functions which changes as the embryonic development of the insect progresses. It plays an important role in the intermediate metabolism and in the metabolism of proteins, lipids and carbohydrates. It has roles in synthesis, absorption and storage of nutrients from hemolymph. It is also responsible for the production of immunological system components, antibacterial compounds and blood clotting proteins. The most common type of fat body cells are trophocytes (the basic cells of the fat body) and oenocytes are found associated with the fat body. In this study, it is aimed at determining the cell types contained in the fat body of Culex pipiens at different developmental stages as well as identifying the molecules such as carbohydrate, protein and lipid contained in each of these cells. Knowing the regional distribution of the fat body cells and the concentration of its content at each developmental stage is important in understanding the process related to its physiology and it may help in fighting against the pest C. pipiens, which is a vector species for many contagious diseases observed in humans and other species. To achieve our goal, we have employed different histochemical techniques (fixatives and staining methods) for staining C. pipiens preparates of different developmental stages and analyzed the structure of the fat body, its distribution, its cell types and the macromolecular contents of the cells. We only observed trophocytes and oenocytes as fat body components in C. pipiens. The trophocytes had all the three macromolecules (lipids, proteins, carbohydrates) in the cytoplasm varying in concentration between the different regions and different stages. The oenocytes were observed below the integument as well as between the muscles in the larvae of Culex pipiens. They were present either as single cells or in clusters and also varied in size. Their cytoplasm was stained strongly for proteins when bromophenol blue staining was applied, but it was rather heterogeneous due to the lipid inclusions. On the contrary, oenocytes were not observed among the adult C. pipiens preparations.
Collapse
Affiliation(s)
- Gamze Turgay-İzzetoğlu
- Section of Zoology, Department of Biology, Faculty of Science, Ege University, İzmir, Turkey.
| | - Mehtap Gülmez
- Section of Zoology, Department of Biology, Faculty of Science, Ege University, İzmir, Turkey
| |
Collapse
|
13
|
Lee WS, Webster JA, Madzokere ET, Stephenson EB, Herrero LJ. Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection. Parasit Vectors 2019; 12:165. [PMID: 30975197 PMCID: PMC6460799 DOI: 10.1186/s13071-019-3433-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/04/2019] [Indexed: 01/24/2023] Open
Abstract
Mosquito-borne diseases are associated with major global health burdens. Aedes spp. and Culex spp. are primarily responsible for the transmission of the most medically important mosquito-borne viruses, including dengue virus, West Nile virus and Zika virus. Despite the burden of these pathogens on human populations, the interactions between viruses and their mosquito hosts remain enigmatic. Viruses enter the midgut of a mosquito following the mosquito’s ingestion of a viremic blood meal. During infection, virus recognition by the mosquito host triggers their antiviral defense mechanism. Of these host defenses, activation of the RNAi pathway is the main antiviral mechanism, leading to the degradation of viral RNA, thereby inhibiting viral replication and promoting viral clearance. However, whilst antiviral host defense mechanisms limit viral replication, the mosquito immune system is unable to effectively clear the virus. As such, these viruses can establish persistent infection with little or no fitness cost to the mosquito vector, ensuring life-long transmission to humans. Understanding of the mosquito innate immune response enables the discovery of novel antivectorial strategies to block human transmission. This review provides an updated and concise summary of recent studies on mosquito antiviral immune responses, which is a key determinant for successful virus transmission. In addition, we will also discuss the factors that may contribute to persistent infection in mosquito hosts. Finally, we will discuss current mosquito transmission-blocking strategies that utilize genetically modified mosquitoes and Wolbachia-infected mosquitoes for resistance to pathogens.
Collapse
Affiliation(s)
- Wai-Suet Lee
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Julie A Webster
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Eugene T Madzokere
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Eloise B Stephenson
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia.,Environmental Futures Research Institute, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia.
| |
Collapse
|
14
|
Kamińska K, Lipovšek S, Kaszuba F, Rost-Roszkowska M. Ultrastructure of the fat body in the soil centipedes Lithobius forficatus (Lithobiidae) and Geophilus flavus (Geophilidae) according to their seasonal rhythms. ZOOL ANZ 2019. [DOI: 10.1016/j.jcz.2019.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Sreenivasamurthy SK, Madugundu AK, Patil AH, Dey G, Mohanty AK, Kumar M, Patel K, Wang C, Kumar A, Pandey A, Prasad TSK. Mosquito-Borne Diseases and Omics: Tissue-Restricted Expression and Alternative Splicing Revealed by Transcriptome Profiling of Anopheles stephensi. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:488-497. [PMID: 28708456 DOI: 10.1089/omi.2017.0073] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Malaria is one of the most debilitating mosquito-borne diseases with high global health burdens. While much of the research on malaria and mosquito-borne diseases is focused on Africa, Southeast Asia accounts for a sizable portion of the global burden of malaria. Moreover, about 50% of the Asian malaria incidence and deaths have been from India. A promising development in this context is that the completion of genome sequence of Anopheles stephensi, a major malaria vector in Asia, offers new opportunities for global health innovation, including the progress in deciphering the vectorial ability of this mosquito species at a molecular level. Moving forward, tissue-based expression profiling would be the next obvious step in understanding gene functions of An. stephensi. We report in this article, to the best of our knowledge, the first in-depth study on tissue-based transcriptomic profile of four important organs (midgut, Malpighian tubules, fat body, and ovary) of adult female An. stephensi mosquitoes. In all, we identified over 20,000 transcripts corresponding to more than 12,000 gene loci from these four tissues. We present and discuss the tissue-based expression profiles of majority of annotated transcripts in An. stephensi genome, and the dynamics of their alternative splicing in these tissues, in this study. The domain-based Gene Ontology analysis of the differentially expressed transcripts in each of the mosquito tissue indicated enrichment of transcripts with proteolytic activity in midgut; transporter activity in Malpighian tubules; cell cycle, DNA replication, and repair activities in ovaries; and oxidoreductase activities in fat body. Tissue-based study of transcript expression and gene functions markedly enhances our understanding of this important malaria vector, and in turn, offers rationales for further studies on vectorial ability and identification of novel molecular targets to intercept malaria transmission.
Collapse
Affiliation(s)
| | - Anil K Madugundu
- 1 Institute of Bioinformatics , Bangalore, India .,3 Centre for Bioinformatics, Pondicherry University , Kalapet, India
| | - Arun H Patil
- 1 Institute of Bioinformatics , Bangalore, India .,4 YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University , Mangalore, India .,5 School of Biotechnology, KIIT University , Bhubaneswar, India
| | - Gourav Dey
- 1 Institute of Bioinformatics , Bangalore, India .,2 Manipal University , Manipal, India
| | - Ajeet Kumar Mohanty
- 6 National Institute of Malaria Research , Field Station, Panjim, India .,7 Department of Zoology, Goa University , Taleigao Plateau, India
| | - Manish Kumar
- 1 Institute of Bioinformatics , Bangalore, India .,2 Manipal University , Manipal, India
| | - Krishna Patel
- 1 Institute of Bioinformatics , Bangalore, India .,8 Amrita School of Biotechnology , Amrita Vishwa Vidyapeetham, Kollam, India
| | - Charles Wang
- 9 Center for Genomics and Department of Basic Sciences, School of Medicine, Loma Linda University , Loma Linda, California
| | - Ashwani Kumar
- 6 National Institute of Malaria Research , Field Station, Panjim, India
| | - Akhilesh Pandey
- 1 Institute of Bioinformatics , Bangalore, India .,10 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland.,11 Department of Biological Chemistry, Johns Hopkins University School of Medicine , Baltimore, Maryland.,12 Department of Oncology, Johns Hopkins University School of Medicine , Baltimore, Maryland.,13 Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | | |
Collapse
|
16
|
Hillyer JF. Insect immunology and hematopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:102-18. [PMID: 26695127 PMCID: PMC4775421 DOI: 10.1016/j.dci.2015.12.006] [Citation(s) in RCA: 306] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/08/2015] [Accepted: 12/10/2015] [Indexed: 05/08/2023]
Abstract
Insects combat infection by mounting powerful immune responses that are mediated by hemocytes, the fat body, the midgut, the salivary glands and other tissues. Foreign organisms that have entered the body of an insect are recognized by the immune system when pathogen-associated molecular patterns bind host-derived pattern recognition receptors. This, in turn, activates immune signaling pathways that amplify the immune response, induce the production of factors with antimicrobial activity, and activate effector pathways. Among the immune signaling pathways are the Toll, Imd, Jak/Stat, JNK, and insulin pathways. Activation of these and other pathways leads to pathogen killing via phagocytosis, melanization, cellular encapsulation, nodulation, lysis, RNAi-mediated virus destruction, autophagy and apoptosis. This review details these and other aspects of immunity in insects, and discusses how the immune and circulatory systems have co-adapted to combat infection, how hemocyte replication and differentiation takes place (hematopoiesis), how an infection prepares an insect for a subsequent infection (immune priming), how environmental factors such as temperature and the age of the insect impact the immune response, and how social immunity protects entire groups. Finally, this review highlights some underexplored areas in the field of insect immunobiology.
Collapse
Affiliation(s)
- Julián F Hillyer
- Department of Biological Sciences, Vanderbilt University, VU Station B 35-1634, Nashville, TN 37235, USA.
| |
Collapse
|
17
|
Hillyer JF. Integrated Immune and Cardiovascular Function in Pancrustacea: Lessons from the Insects. Integr Comp Biol 2015; 55:843-55. [DOI: 10.1093/icb/icv021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
18
|
de Assis WA, Malta J, Pimenta PFP, Ramalho-Ortigão JM, Martins GF. The characterization of the fat bodies and oenocytes in the adult females of the sand fly vectors Lutzomyia longipalpis and Phlebotomus papatasi. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:501-9. [PMID: 24863740 DOI: 10.1016/j.asd.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 06/03/2023]
Abstract
The fat body (FB) is responsible for the storage and synthesis of the majority of proteins and metabolites secreted into the hemolymph. Oenocytes are responsible for lipid processing and detoxification. The FB is distributed throughout the insect body cavity and organized as peripheral and perivisceral portions in the abdomen, with trophocytes and oenocytes attached to the peripheral portion. Here, we investigated the morphology and the subcellular changes in the peripheral and perivisceral FBs and in oenocytes of the sand flies Lutzomyia longipalpis and Phlebotomus papatasi after blood feeding. In L. longipalpis two-sized oenocytes (small and large) were identified, with both cell types displaying well-developed reticular system and smooth endoplasmic reticulum, whereas in P. papatasi, only small cells were observed. Detailed features of FBs of L. longipalpis and P. papatasi are shared either prior to or after blood feeding. The peripheral and perivisceral FBs responded to blood feeding with the development of glycogen zones and rough endoplasmic reticulum. This study provides the first detailed description of the FBs and oenocytes in sand flies, contributing significantly towards are better understanding of the biology of such important disease vectors.
Collapse
Affiliation(s)
- Wiviane Alves de Assis
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| | - Juliana Malta
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| | - Paulo Filemon P Pimenta
- Laboratório de Entomologia Médica, Instituto de Pesquisas René Rachou-CPqRR, Fundação Oswaldo Cruz (Fiocruz-MG), Avenida Augusto de Lima, 1715, Belo Horizonte, Minas Gerais CEP 30190-002, Brazil.
| | | | - Gustavo Ferreira Martins
- Programa de Pós-graduação em Biologia Celular e Estrutural, Departamento de Biologia Geral, Universidade Federal de Viçosa (DBG/UFV), Campus Universitário, Viçosa, Minas Gerais CEP 36570-900, Brazil.
| |
Collapse
|
19
|
Furtado WCA, Azevedo DO, Martins GF, Zanuncio JC, Serrão JE. Histochemistry and ultrastructure of urocytes in the pupae of the stingless bee Melipona quadrifasciata (Hymenoptera: Meliponini). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1502-1510. [PMID: 24016411 DOI: 10.1017/s1431927613013445] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The main cell types of the adult bee fat body are trophocytes and oenocytes; however, in pupae of some newly emerged bees, trophocytes are modified into cells called urocytes, which possibly function as a substitute for Malpighian tubules during metamorphosis when larval tubules are not functional and/or storage of urate salts is required. This study evaluated the morphology of urocytes in the stingless bee Melipona quadrifasciata and the possibility of maintaining these cells in primary culture. The urocytes M. quadrifasciata are white spherical cells with an irregular surface as observed by stereomicroscopy. They may be found individually or in groups associated with tracheae. Urocytes have a single, small, and spherical nucleus and cytoplasm rich in neutral polysaccharides, lipid droplets, protein, and granules containing calcium and urate salts. Our findings suggest that urocytes play a role in storage of neutral polysaccharides and calcium in M. quadrifasciata pupae and that these cells can be cultured for 72 h.
Collapse
Affiliation(s)
- Waléria C A Furtado
- Department of General Biology, Federal University of Viçosa, 36570-000 Viçosa, MG, Brazil
| | | | | | | | | |
Collapse
|
20
|
Zheng H, Li L, Xu Q, Zou Q, Tang B, Wang S. Gene cloning and expression patterns of two prophenoloxidases from Catantops pinguis (Orthoptera: Catantopidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:393-405. [PMID: 23507507 DOI: 10.1017/s0007485312000831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In insect, fat body plays major roles in insect innate immunity. Phenoloxidase (PO) is an important component in insect innate immunity and is necessary for acclimatization. In our study, two prophenoloxidase (PPO) subunits were obtained from fat body of Catantops pinguis (Stål). The full-length cDNA sequence of one PPO (CpPPO1) consisted of 2347 bp with an open reading frame (ORF) of 2187 bp encoding 728 amino acids, while the other subunit (CpPPO2) had a full length of 2445 bp, encoding 691 amino acids. Both the PPO gene products are predicted to possess all the structural features of other PPO members, including two putative tyrosinase copper-binding motifs with six highly conserved histidine residues and a thiolester-like motif. Tissue distribution analysis showed that both PPO mRNAs were abundantly expressed in the fat body among 11 tissues examined, and they were transiently up-regulated after Escherichia coli infection, consistent with them being immune-responsive genes. Total levels of CpPPO1 and CpPPO2 mRNA transcripts were much higher in first instar larvae and adults. A much higher transcript level of CpPPO1 was detected in several months, while there were extremely high mRNA expression levels of CpPPO2 in January, July, October, and December. The above results suggested that PPO from fat body might also bring significant function during the processes of development and acclimatization for C. pinguis.
Collapse
Affiliation(s)
- Huizhen Zheng
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | | | | | | | | | | |
Collapse
|