1
|
Junior DBC, Lacerda PS, de Pilla Varotti F, Leite FHA. Towards development of new antimalarial compounds through in silico and in vitro assays. Comput Biol Chem 2024; 111:108093. [PMID: 38772047 DOI: 10.1016/j.compbiolchem.2024.108093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
Malaria is one of most widespread infectious disease in world. The antimalarial therapy presents a series of limitations, such as toxicity and the emergence of resistance, which makes the search for new drugs urgent. Thus, it becomes necessary to explore essential and exclusive therapeutic targets of the parasite to achieve selective inhibition. Enoyl-ACP reductase is an enzyme of the type II fatty acid biosynthetic pathway and is responsible for the rate-limiting step in the fatty acid elongation cycle. In this work, we use hierarchical virtual screening and drug repositioning strategies to prioritize compounds for phenotypic assays and molecular dynamics studies. The molecules were tested against chloroquine-resistant W2 strain of Plasmodium falciparum (EC50 between 330.05 and 13.92 µM). Nitrofurantoin was the best antimalarial activity at low micromolar range (EC50 = 13.92 µM). However, a hit compound against malaria must have a biological activity value below 1 µM. A large number of molecules present problems with permeability in biological membranes and reaching an effective concentration in their target's microenvironment. Nitrofurantoin derivatives with inclusions of groups which confer increased lipid solubility (methyl groups, halogens and substituted and unsubstituted aromatic rings) have been proposed. These derivatives were pulled through the lipid bilayer in molecular dynamics simulations. Molecules 14, 18 and 21 presented lower free energy values than nitrofurantoin when crossing the lipid bilayer.
Collapse
Affiliation(s)
| | - Pedro Sousa Lacerda
- Laboratório de Bioinformática e Modelagem Molecular, Universidade Federal da Bahia, Brazil
| | | | - Franco Henrique Andrade Leite
- Programa de pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Brazil; Programa de pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Brazil; Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Brazil.
| |
Collapse
|
2
|
Assis FFVD, Almeida Junior JSD, Moraes TMP, Varotti FDP, Moraes CC, Sartoratto A, Moraes WP, Minervino AHH. Antiplasmodial Activity of Hydroalcoholic Extract from Jucá ( Libidibia ferrea) Pods. Pharmaceutics 2023; 15:pharmaceutics15041162. [PMID: 37111647 PMCID: PMC10145024 DOI: 10.3390/pharmaceutics15041162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/01/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023] Open
Abstract
Malaria is an infectious and parasitic disease caused by protozoa of the genus Plasmodium, which affects millions of people in tropical and subtropical areas. Recently, there have been multiple reports of drug resistance in Plasmodium populations, leading to the search for potential new active compounds against the parasite. Thus, we aimed to evaluate the in vitro antiplasmodial activity and cytotoxicity of the hydroalcoholic extract of Jucá (Libidibia ferrea) in serial concentrations. Jucá was used in the form of a freeze-dried hydroalcoholic extract. For the cytotoxicity assay, the(3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method with the WI-26VA4 human cell line was used. For the antiplasmodial activity, Plasmodium falciparum synchronized cultures were treated with serial concentrations (0.2 to 50 μg/mL) of the Jucá extract. In terms of the chemical composition of the Jucá extract, gas chromatography coupled to mass spectrometry measurements revealed the main compounds as ellagic acid, valoneic acid dilactone, gallotannin, and gallic acid. The Jucá hydroalcoholic extract did not show cytotoxic activity per MTT, with an IC50 value greater than 100 µg/mL. Regarding the antiplasmodial activity, the Jucá extract presented an IC50 of 11.10 µg/mL with a selective index of nine. Because of its antiplasmodial activity at the tested concentrations and low toxicity, the Jucá extract is presented as a candidate for herbal medicine in the treatment of malaria. To the best of our knowledge, this is the first report of antiplasmodial activity in Jucá.
Collapse
Affiliation(s)
| | - José Sousa de Almeida Junior
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | - Tânia Mara Pires Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | - Fernando de Pilla Varotti
- Núcleo de Pesquisa em Química Biológica (NQBio), Universidade Federal de São João Del Rei, Campus Centro-Oeste, Av. Sebastião G. Coelho, 400, Chanadour, Divinópolis 35501-296, Brazil
| | - Camila Castilho Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | - Adilson Sartoratto
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade de Campinas-UNICAMP, Campinas 13148-218, Brazil
| | - Waldiney Pires Moraes
- Laboratório de Farmacologia Experimental, Universidade Federal do Oeste do Pará, UFOPA, Santarém 68040-255, Brazil
| | | |
Collapse
|
3
|
da Silva DF, de Souza JL, da Costa DM, Costa DB, Moreira POL, Fonseca ALD, Varotti FDP, Cruz JN, Dos Santos CBR, Alves CQ, Leite FHA, Brandão HN. Antiplasmodial activity of coumarins isolated from Polygala boliviensis: in vitro and in silico studies. J Biomol Struct Dyn 2023; 41:13383-13403. [PMID: 36744465 DOI: 10.1080/07391102.2023.2173295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Polygala boliviensis is found in the Brazilian semiarid region. This specie is little chemically and biologically studied. Polygala spp. have different metabolites, especially coumarins. Studies indicate that coumarins have antimalarial potential, denoting the importance of researching new active compounds from plants, since the resistance of Plasmodium strains to conventional therapy has increased. The present study aimed to evaluate the antiplasmodial activity of auraptene and poligalen against a chloroquine-resistant strain of Plasmodium falciparum. Coumarins were isolated from P. boliviensis by open column chromatography and identified by Nuclear Magnetic Resonance Spectroscopy. A cytotoxicity assay was carried out using MTT test, and the in vitro antiplasmodial activity was evaluated using the W2 strain. The antiplasmodial activity results found were IC50=0.171 ± 0.016 for auraptene and 0.164 ± 0.012 for poligalen; the selectivity indexes were 78.71 and 609.76, respectively. Inverse virtual screening in the BRAMMT database by OCTOPUS 1.2 was applied to coumarins to find potential P. falciparum targets and showed higher affinity energy of auraptene for purine nucleoside phosphorylase (PfPNP) and of poligalen for dihydroorotate dehydrogenase (PfDHODH). Molecular Dynamics studies (MD and MM-GBSA) approach were applied to calculate binding energies against selected P. falciparum targets and showed that all coumarins were stable at the binding site during simulations. Furthermore, energies were favorable for complexation. This is the first report of auraptene in P. boliviensis species and of in vitro antiplasmodial activity of auraptene and poligalen. In silico studies indicated that the mechanism of action of coumarins is the inhibition of PfPNP and PfDHODH.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Danielle Figuerêdo da Silva
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Jéssica Lima de Souza
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Diego Mota da Costa
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - David Bacelar Costa
- Departamento de Saúde, Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Paulo Otávio Lourenço Moreira
- Centro de Ciências da Saúde, Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Amanda Luisa da Fonseca
- Centro de Ciências da Saúde, Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Fernando de Pilla Varotti
- Centro de Ciências da Saúde, Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Jorddy Neves Cruz
- Departamento de Ciências Biológicas e da Saúde, Laboratório de Modelagem e Química Computacional, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Cleydson Breno Rodrigues Dos Santos
- Departamento de Ciências Biológicas e da Saúde, Laboratório de Modelagem e Química Computacional, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Clayton Queiroz Alves
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Franco Henrique Andrade Leite
- Departamento de Saúde, Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Hugo Neves Brandão
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| |
Collapse
|
4
|
Costa Júnior DB, Araújo JSC, Oliveira LDM, Neri FSM, Moreira POL, Taranto AG, Fonseca AL, Varotti FDP, Leite FHA. A novel antiplasmodial compound: integration of in silico and in vitro assays. J Biomol Struct Dyn 2021; 40:6295-6307. [PMID: 33554762 DOI: 10.1080/07391102.2021.1882339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Malaria is a disease caused by Plasmodium genus. which P. falciparum is responsible for the most severe form of the disease, cerebral malaria. In 2018, 405,000 people died of malaria. Antimalarial drugs have serious adverse effects and limited efficacy due to multidrug-resistant strains. One way to overcome these limitations is the use of computational approaches for prioritizing candidates to phenotypic assays and/or in vitro assays against validated targets. Plasmodium falciparum Enoyl-ACP reductase (PfENR) is noteworthy because it catalyzes the rate-limiting step of the biosynthetic pathway of fatty acid. Thus, the study aimed to identify potential PfENR inhibitors by ligand (2D molecular similarity and pharmacophore models) and structure-based virtual screening (molecular docking). 2D similarity-based virtual screening using Tanimoto Index (> 0.45) selected 29,236 molecules from natural products subset available in ZINC database (n = 181,603). Next, 10 pharmacophore models for PfENR inhibitors were generated and evaluated based on the internal statistical parameters from GALAHAD™ and ROC/AUC curve. These parameters selected a suitable pharmacophore model with one hydrophobic center and two hydrogen bond acceptors. The alignment of the filtered molecules on best pharmacophore model resulted in the selection of 10,977 molecules. These molecules were directed to the docking-based virtual screening by AutoDock Vina 1.1.2 program. These strategies selected one compound to phenotypic assays against parasite. ZINC630259 showed EC50 = 0.12 ± 0.018 µM in antiplasmodial assays and selective index similar to other antimalarial drugs. Finally, MM/PBSA method showed stability of molecule within PfENR binding site (ΔGbinding=-57.337 kJ/mol).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- David Bacelar Costa Júnior
- Programa de pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | - Larissa de Mattos Oliveira
- Programa de pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Flávio Simas Moreira Neri
- Programa de pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | - Alex Gutterres Taranto
- Laboratório de Bioinformática e Desenho de Fármacos, Universidade Federal de São João Del-Rei, Feira de Santana, Brazil
| | - Amanda Luisa Fonseca
- Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Feira de Santana, Brazil
| | - Fernando de Pilla Varotti
- Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Feira de Santana, Brazil
| | - Franco Henrique Andrade Leite
- Programa de pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Laboratório de Qumioinformática e Avaliação Biológica, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|
5
|
Costa Júnior DB, Araújo JSC, de Mattos Oliveira L, Neri FSM, Moreira POL, Taranto AG, Fonseca AL, de Pilla Varotti F, Leite FHA. Identification of novel antiplasmodial compound by hierarquical virtual screening and in vitro assays. J Biomol Struct Dyn 2020; 39:3378-3386. [PMID: 32364060 DOI: 10.1080/07391102.2020.1763837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Malaria is an infectious disease caused by protozoa of the genus Plasmodium spp. with approximately 219 million cases in 2017. P. falciparum is main responsible for the most severe form of the disease, cerebral malaria. Despite of public health impacts, chemotherapy against malaria is still limited due to the emergence of drug resistance cases used in monotherapy and combination therapies. Thus, the development of new antimalarial drugs becomes emergency. One way of achieve this goal is to explore essential and/or unique therapeutic targets of the parasite, or at least sufficiently different to ensure selective inhibition. Enoil-ACP reductase (ENR) is a NADH-dependent enzyme responsible for the limiting step of the type II fatty acid biosynthetic pathway (FAS II). Thus, pharmacophore and docking based virtual screening were applied to prioritize molecules for in vitro assays against P. falciparum W2 strain. The application of successive filters at OOCC database (n = 618) resulted in the identification of one molecule (13) (EC50 = 0.098 ± 0.021 μM) with similar biological activity to artemether. The molecule 13 is a typical drug repurposing case due to previous other approved therapeutic uses on Chinese medicine as a non-specific cholinergic antagonist, thus it could be accelerated the drug development process. Additionally, molecular dynamics studies were used to confirm stability of the molecular interactions identified by molecular docking. Thus, representative structures of P. falciparum ENR can be used in a study to propose new derivatives for evaluation of biological activity in vitro and in vivo. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- David Bacelar Costa Júnior
- Programa de pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | - Larissa de Mattos Oliveira
- Programa de pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | - Flávio Simas Moreira Neri
- Programa de pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| | | | - Alex Gutterres Taranto
- Laboratório de Química Farmacêutica Medicinal, Universidade Federal de São João Del-Rei, Sao Joao del-Rei, Brazil
| | - Amanda Luisa Fonseca
- Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Sao Joao del-Rei, Brazil
| | - Fernando de Pilla Varotti
- Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Sao Joao del-Rei, Brazil
| | - Franco Henrique Andrade Leite
- Programa de pós-graduação em Ciências Farmacêuticas, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Programa de pós-graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil.,Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil
| |
Collapse
|