1
|
Herculano RD, Mussagy CU, Guerra NB, Sant'Ana Pegorin Brasil G, Floriano JF, Burd BS, Su Y, da Silva Sasaki JC, Marques PAC, Scontri M, Miranda MCR, Ferreira ES, Primo FL, Fernandes MA, He S, Forster S, Ma C, de Lima Lopes Filho PE, Dos Santos LS, Silva GR, Crotti AEM, de Barros NR, Li B, de Mendonça RJ. Recent advances and perspectives on natural latex serum and its fractions for biomedical applications. BIOMATERIALS ADVANCES 2024; 157:213739. [PMID: 38154400 DOI: 10.1016/j.bioadv.2023.213739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Advances and the discovery of new biomaterials have opened new frontiers in regenerative medicine. These biomaterials play a key role in current medicine by improving the life quality or even saving the lives of millions of people. Since the 2000s, Natural Rubber Latex (NRL) has been employed as wound dressings, mechanical barrier for Guided Bone Regeneration (GBR), matrix for drug delivery, and grafting. NRL is a natural polymer that can stimulate cell proliferation, neoangiogenesis, and extracellular matrix (ECM) formation. Furthermore, it is well established that proteins and other biologically active molecules present in the Natural Latex Serum (NLS) are responsible for the biological properties of NRL. NLS can be obtained from NRL by three main methods, namely (i) Centrifugation (fractionation of NRL in distinct fractions), (ii) Coagulation and sedimentation (coagulating NRL to separate the NLS from rubber particles), and (iii) Alternative extraction process (elution from NRL membrane). In this review, the chemical composition, physicochemical properties, toxicity, and other biological information such as osteogenesis, vasculogenesis, adhesion, proliferation, antimicrobial behavior, and antitumoral activity of NLS, as well as some of its medical instruments and devices are discussed. The progress in NLS applications in the biomedical field, more specifically in cell cultures, alternative animals, regular animals, and clinical trials are also discussed. An overview of the challenges and future directions of the applications of NLS and its derivatives in tissue engineering for hard and soft tissue regeneration is also given.
Collapse
Affiliation(s)
- Rondinelli Donizetti Herculano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA.
| | - Cassamo Ussemane Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Chile
| | | | - Giovana Sant'Ana Pegorin Brasil
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Juliana Ferreira Floriano
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; School of Science, São Paulo State University (UNESP), 17033-360 Bauru, SP, Brazil
| | - Betina Sayeg Burd
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Yanjin Su
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Josana Carla da Silva Sasaki
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil; São Paulo State University (UNESP), Post-Graduate Program in Biotechnology, Institute of Chemistry, 14800-903 Araraquara, SP, Brazil
| | - Paulo Augusto Chagas Marques
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13560-970 Sao Carlos, SP, Brazil
| | - Mateus Scontri
- Bioengineering & Biomaterials Group, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Matheus Carlos Romeiro Miranda
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, 275, 09972-270 Diadema, SP, Brazil
| | - Ernando Silva Ferreira
- State University of Feira de Santana (UEFS), Department of Physics, s/n Transnordestina Highway, 44036-900 Feira de Santana, BA, Brazil
| | - Fernando Lucas Primo
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara 14800-903, São Paulo, Brazil
| | - Mariza Aires Fernandes
- Bionanomaterials and Bioengineering Group, Department of Biotechnology and Bioprocesses Engineering, São Paulo State University (UNESP), Faculty of Pharmaceutical Sciences, Araraquara 14800-903, São Paulo, Brazil
| | - Siqi He
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Samuel Forster
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Changyu Ma
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | | | - Lindomar Soares Dos Santos
- Department of Physics, Faculty of Philosophy, Sciences and Languages at Ribeirão Preto, Universidade de São Paulo University (USP), 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Glaucio Ribeiro Silva
- Federal Institute of Education, Science, and Technology of Minas Gerais, s/n São Luiz Gonzaga Street, 35577-010 Formiga, Minas Gerais, Brazil
| | - Antônio Eduardo Miller Crotti
- Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, 3900 Bandeirantes Avenue, 14.040-901 Ribeirão Preto, SP, Brazil
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Bingbing Li
- Autonomy Research Center for STEAHM (ARCS), California State University, Northridge, CA 91324, USA; Terasaki Institute for Biomedical Innovation (TIBI), 11507 W Olympic Blvd, Los Angeles, CA 90064, USA
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Application of a low-level laser therapy and the purified protein from natural latex (Hevea brasiliensis) in the controlled crush injury of the sciatic nerve of rats: a morphological, quantitative, and ultrastructural study. BIOMED RESEARCH INTERNATIONAL 2013; 2013:597863. [PMID: 23936823 PMCID: PMC3713596 DOI: 10.1155/2013/597863] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/05/2013] [Accepted: 06/05/2013] [Indexed: 12/13/2022]
Abstract
This study analyzed the effects of a low-level laser therapy (LLLT, 15 J/cm2, 780 nm wavelength) and the natural latex protein (P1, 0.1%) in sciatic nerve after crush injury (15 Kgf, axonotmesis) in rats. Sixty rats (male, 250 g) were allocated into the 6 groups (n = 10): CG—control group; EG—nerve exposed; IG—injured nerve without treatment; LG—crushed nerve treated with LLLT; PG—injured nerve treated with P1; and LPG—injured nerve treated with LLLT and P1. After 4 or 8 weeks, the nerve samples were processed for morphological, histological quantification and ultrastructural analysis. After 4 weeks, the myelin density and morphological characteristics improved in groups LG, PG, and LPG compared to IG. After 8 weeks, PG, and LPG were similar to CG and the capillary density was higher in the LG, PG, and LPG. In the ultrastructural analysis the PG and LPG had characteristics that were similar to the CG. The application of LLLT and/or P1 improved the recovery from the nerve crush injury, and in the long term, the P1 protein was the better treatment used, since only the application of LLLT has not reached the same results, and these treatments applied together did not potentiate the recovery.
Collapse
|
4
|
Sousa LHD, Ceneviva R, Coutinho Netto J, Mrué F, Sousa Filho LHD, Castro e Silva OD. Morphologic evaluation of the use of a latex prosthesis in videolaparoscopic inguinoplasty: an experimental study in dogs. Acta Cir Bras 2012; 26 Suppl 2:84-91. [PMID: 22030821 DOI: 10.1590/s0102-86502011000800016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023] Open
Abstract
PURPOSE To evaluate the morphological aspects of the behavior of 4 types of latex biomembranes implanted in preperitoneal videolaparoscopic inguinoplasty. METHODS Sixteen inguinoplasties were performed in 12 dogs: group 1 received an impermeable latex biomembrane in the right inguinal region and a prolene prosthesis, as control, in the contralateral inguinal region; groups 2, 3 and 4 received latex biomembranes respectively containing impermeable polyamide, 1-mm thick porous polyamide and 0.5-mm thick porous polyamide. Macro- and microscopic evaluations of the inguinal region and of the removed implants were made on the 7th, 14th, 21st and 28th days in group 1 and on the 28th postoperative day in the other groups. RESULTS We observed absence of hematoma, seroma and infection; presence of tortuosities; induction of vascular neoformation, inflammatory reaction and collagen deposition, and full encystment of the latex biomembranes, except that with fine porous polyamide, which was partially incorporated, with the formation of microcysts. No latex biomembrane induced fibrosis as observed in the prolene control group. CONCLUSIONS The biomembranes maintain induction of the healing process without fibrosis, are fully encysted and, except for the one with fine porous polyamide, are not incorporated into adjacent tissues. The latex biomembrane, with or without polyamide, is not recommended as a separate material for preperitoneal inguinoplasty.
Collapse
|