Krishnamurthy M, Li J, Fellows GF, Rosenberg L, Goodyer CG, Wang R. Integrin {alpha}3, but not {beta}1, regulates islet cell survival and function via PI3K/Akt signaling pathways.
Endocrinology 2011;
152:424-35. [PMID:
21177833 DOI:
10.1210/en.2010-0877]
[Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
β1-integrin is a well-established regulator of β-cell activities; however, the role of its associated α-subunits is relatively unknown. Previously, we have shown that human fetal islet and INS-1 cells highly express α3β1-integrin and that collagens I and IV significantly enhance their survival and function; in addition, blocking β1 function in the fetal islet cells decreased adhesion on collagen I and increased apoptosis. The present study investigates the effect of blocking α3. Using α3 blocking antibody or small interfering RNA, the effects of α3-integrin blockade were examined in isolated human fetal or adult islet cells or INS-1 cells, cultured on collagens I or IV. In parallel, β1 blockade was analyzed in INS-1 cells. Perturbing α3 function in human islet or INS-1 cells resulted in significant decreases in cell function (adhesion, spreading, proliferation and Pdx1 and insulin expression/secretion), primarily on collagen IV. A significant decrease in focal adhesion kinase and ERK1/2 phosphorylation and increased caspase3 cleavage were observed on both collagens. These effects were similar to changes after β1 blockade. Interestingly, only α3 blockade reduced expression of phospho-Akt and members of its downstream signaling cascades (glycogen synthase kinase β and X-linked inhibitor of apoptosis), demonstrating a specific effect of α3 on the phosphatidylinositol 3-kinase/Akt pathway. These results suggest that α3- as well as β1-integrin-extracellular matrix interactions are critical for modulating β-cell survival and function through specialized signaling cascades and enhance our understanding of how to improve islet microenvironments for cell-based treatments of diabetes.
Collapse