1
|
Kancheva I, Buma F, Kwakkel G, Kancheva A, Ramsey N, Raemaekers M. Investigating secondary white matter degeneration following ischemic stroke by modelling affected fiber tracts. Neuroimage Clin 2022; 33:102945. [PMID: 35124524 PMCID: PMC8829801 DOI: 10.1016/j.nicl.2022.102945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
Abstract
Secondary white matter degeneration was studied in 11 ischemic stroke patients. We used a custom-developed approach to model damaged fibers associated with a lesion. This approach tackles the inter-subject variability in lesion size and location. Findings suggest that secondary degeneration spreads along an entire fiber’s length.
Secondary white matter degeneration is a common occurrence after ischemic stroke, as identified by Diffusion Tensor Imaging (DTI). However, despite recent advances, the time course of the process is not completely understood. The primary aim of this study was to assess secondary degeneration using an approach whereby we create a patient-specific model of damaged fibers based on the volumetric characteristics of lesions. We also examined the effects of secondary degeneration along the modelled streamlines at different distances from the primary infarction using DTI. Eleven patients who presented with upper limb motor deficits at the time of a first-ever ischemic stroke were included. They underwent scanning at weeks 6 and 29 post-stroke. The fractional anisotropy (FA), mean diffusivity (MD), primary eigenvalue (λ1), and transverse eigenvalue (λ23) were measured. Using regions of interest based on the simulation output, the differences between the modelled fibers and matched contralateral areas were analyzed. The longitudinal change between the two time points and across five distances from the primary lesion was also assessed using the ratios of diffusion quantities (rFA, rMD, rλ1, and rλ23) between the ipsilesional and contralesional hemisphere. At week 6 post-stroke, significantly decreased λ1 was found along the ipsilesional corticospinal tract (CST) with a trend towards lower FA, reduced MD and λ23. At week 29 post-stroke, significantly decreased FA was shown relative to the non-lesioned side, with a trend towards lower λ1, unchanged MD, and higher λ23. Along the ipsilesional tract, the rFA diminished, whereas the rMD, rλ1, and rλ23 significantly increased over time. No significant variations in the time progressive effect with distance were demonstrated. The findings support previously described mechanisms of secondary degeneration and suggest that it spreads along the entire length of a damaged tract. Future investigations using higher-order tractography techniques can further explain the intravoxel alterations caused by ischemic injury.
Collapse
Affiliation(s)
- Ivana Kancheva
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85060, 3508AB Utrecht, The Netherlands.
| | - Floor Buma
- Department of Anatomy and Neurosciences, MOVE Research Institute Amsterdam, VU University Medical Center, PO Box 7057, 1007MB Amsterdam, The Netherlands
| | - Gert Kwakkel
- Department of Rehabilitation Medicine, VU University Medical Center, PO Box 7057, 1007MB Amsterdam, The Netherlands
| | - Angelina Kancheva
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85060, 3508AB Utrecht, The Netherlands
| | - Nick Ramsey
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85060, 3508AB Utrecht, The Netherlands
| | - Mathijs Raemaekers
- UMC Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, PO Box 85060, 3508AB Utrecht, The Netherlands
| |
Collapse
|
2
|
Ayannuga OA, Shokunbi MT, Naicker TA. Myelin Sheath Injury in Kaolin-Induced Hydrocephalus: A Light and Electron Microscopy Study. Pediatr Neurosurg 2016; 51:61-8. [PMID: 26761462 DOI: 10.1159/000442212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/04/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND In hydrocephalus, the impairment of cognitive and motor functions is thought to be partly due to injury to the myelin sheath of axons in the central nervous system. The exact nature of this injury is not completely understood. METHODS We induced hydrocephalus in 3-week-old rats with an intracisternal injection of kaolin suspension (0.04 ml of 200 mg/ml) and examined paraffin and ultrathin sections of the subcortical white matter from coronal slices of the cerebrum obtained at the level of the optic chiasm after sacrifice at weekly intervals for 4 weeks. RESULTS Over time, there was a progression of injury to the myelin sheath consisting of attenuation, lamella separation and accumulation of myelin debris, focal degeneration, and the appearance of casts and loops. CONCLUSION The results suggest that myelin injury in kaolin-induced hydrocephalus progresses with the duration and severity of ventriculomegaly.
Collapse
Affiliation(s)
- Olugbenga A Ayannuga
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | |
Collapse
|
3
|
Mietto BS, Mostacada K, Martinez AMB. Neurotrauma and inflammation: CNS and PNS responses. Mediators Inflamm 2015; 2015:251204. [PMID: 25918475 PMCID: PMC4397002 DOI: 10.1155/2015/251204] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/24/2015] [Accepted: 03/09/2015] [Indexed: 01/09/2023] Open
Abstract
Traumatic injury to the central nervous system (CNS) or the peripheral nervous system (PNS) triggers a cascade of events which culminate in a robust inflammatory reaction. The role played by inflammation in the course of degeneration and regeneration is not completely elucidated. While, in peripheral nerves, the inflammatory response is assumed to be essential for normal progression of Wallerian degeneration and regeneration, CNS trauma inflammation is often associated with poor recovery. In this review, we discuss key mechanisms that trigger the inflammatory reaction after nervous system trauma, emphasizing how inflammations in both CNS and PNS differ from each other, in terms of magnitude, cell types involved, and effector molecules. Knowledge of the precise mechanisms that elicit and maintain inflammation after CNS and PNS tissue trauma and their effect on axon degeneration and regeneration is crucial for the identification of possible pharmacological drugs that can positively affect the tissue regenerative capacity.
Collapse
Affiliation(s)
- Bruno Siqueira Mietto
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, 21941-550 Rio de Janeiro, RJ, Brazil
| | - Klauss Mostacada
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, 21941-550 Rio de Janeiro, RJ, Brazil
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, 21941-550 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Degeneration and regeneration of motor and sensory nerves: a stereological study of crush lesions in rat facial and mental nerves. Int J Oral Maxillofac Surg 2013; 42:1566-74. [DOI: 10.1016/j.ijom.2013.04.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 03/07/2013] [Accepted: 04/25/2013] [Indexed: 11/20/2022]
|
5
|
Aquino JB, Musolino PL, Coronel MF, Villar MJ, Setton-Avruj CP. Nerve degeneration is prevented by a single intraneural apotransferrin injection into colchicine-injured sciatic nerves in the rat. Brain Res 2006; 1117:80-91. [PMID: 17010319 DOI: 10.1016/j.brainres.2006.02.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/08/2006] [Accepted: 02/08/2006] [Indexed: 10/24/2022]
Abstract
In this work, we have immunohistochemically analyzed the effects of single injections of apotransferrin (aTf) on the expression of myelin (myelin basic proteins [MBPs]) and axonal (protein gene product 9.5 [PGP 9.5] and beta(III)-tubulin [beta(III)-tub]) proteins in colchicine-injected and crushed sciatic nerves of adult rats. A protein redistribution was seen in the distal stump of injured nerves, with the appearance of MBP- and PGP 9.5-immunoreactive (IR) clusters which occurred earlier in crushed nerves (3 days post-injury [PI]) as compared to colchicine-injected nerves (7 days PI). beta(III)-tub-IR clusters appeared at 1 day PI preceding the PGP 9.5- and MBP-IR clusters in colchicine-injected nerves. With image analysis, the peak of clustering formation was found at 14 days PI for MBP and at 3 days PI for beta(III)-tub in colchicine-injected nerves. At 28 days of survival, the protein distribution patterns were almost normal. The intraneural application of aTf, at different concentrations (0.0005 mg/ml, 0.005 mg/ml, 0.05 mg/ml, 0.5 mg/ml), prevented nerve degeneration produced by colchicine, with the appearance of only a small number of MBP- and beta(III)-tub-IR clusters. However, aTf was not able to prevent clustering formation when the nerve was crushed, a kind of injury that also involves necrosis and blood flow alterations. The results suggest that aTf could prevent the colchicine effects by stabilizing the cytoskeleton proteins of the nerve fibers, avoiding the disruption of the axonal transport and thus the myelin degeneration. Transferrin is proposed as a complementary therapeutic avenue for treatment of cytotoxic nerve injuries.
Collapse
Affiliation(s)
- Jorge B Aquino
- Faculty of Biomedical Sciences, Austral University, Av. Pte. Perón 1500, B1629AHJ Pilar, Prov. Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
6
|
Ja'afer FMH, Hamdan FB, Mohammed FH. Vincristine-induced neuropathy in rat: electrophysiological and histological study. Exp Brain Res 2006; 173:334-45. [PMID: 16736180 DOI: 10.1007/s00221-006-0499-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 04/23/2006] [Indexed: 10/24/2022]
Abstract
Peripheral sensory-motor neuropathy is one of the most frequent side effects of vincristine (VCR) administration, which often limits its usefulness in the treatment of a wide range of neoplastic diseases. The purpose of this work is to study VCR neurotoxicity in experimental animals from clinical, electrophysiological, and histological points of view. Sixty-five rats were used as a control group and 31 rats were divided into two groups and given VCR in two different regimens: the fixed-dose group (0.2 mg/kg) and the increasing-dose group (0.1 mg/kg, by an increment of 0.05 mg/kg/week). VCR was given intraperitoneally once weekly for five consecutive weeks. Electrophysiological examinations of the control and both treated groups were performed and included measurements of nerve conduction velocity and action potential (AP) amplitude of sciatic and tail nerves weekly during the period of treatment and 14 weeks after discontinuation of treatment. Histological sections of sciatic nerves were examined after the appearance of early electrophysiological changes, at the end of the 5th, and 19th weeks of the study (14 weeks after discontinuation of treatment). With the progress of the treatment, an increasing number of rats showing signs of neurological deficits were observed. During the first 5 weeks of this study, electrophysiological testing showed a nonsignificant difference in the conduction velocities of sciatic and tail nerves between the control and the treated groups, whereas a significant decrease in the amplitude of the sensory nerve action potential (SNAP) and compound muscle action potential (CMAP) of the tested nerves was recorded. The reduction in the AP amplitude was associated with histological changes characterized by axonal degeneration with relative demyelination. Fourteen weeks after discontinuation of treatment, a significant increment in the SNAP and CMAP amplitudes of both sciatic and tail nerves was noticed. While the CMAP amplitude of the distal segment of the tail showed nonsignificant increment, lesser number of fibers with axonal and/or myelin lesions were found. The clinical, electrophysiological, and histological results suggest that VCR induces peripheral sensorimotor neuropathy of axonal type more prominent in the fixed- than the increasing-dose group. The discontinuation of VCR permitted the improvement of the electrophysiological and histological changes. The rat can be used as an animal model for studying VCR neurotoxicity. However, further studies on larger number of animals are required to evaluate the type of nerve fiber involvement and the site of damage.
Collapse
Affiliation(s)
- Feras M H Ja'afer
- Department of Physiology, College of Medicine, Al Nahrain University, P.O. Box: 70042, Kadhimia, Baghdad, Iraq.
| | | | | |
Collapse
|
7
|
Corrêa CL, Allodi S, Martinez AMB. Ultrastructural Study of Normal and Degenerating Nerve Fibers in the Protocerebral Tract of the Crab Ucides cordatus. BRAIN, BEHAVIOR AND EVOLUTION 2005; 66:145-57. [PMID: 16088099 DOI: 10.1159/000087155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Accepted: 02/09/2005] [Indexed: 11/19/2022]
Abstract
Wallerian degeneration is a very well described phenomenon in the vertebrate nervous system. In arthropods, and especially in crustaceans, nerve fiber degeneration has not been described extensively. In addition, literature shows that the events do not follow the same patterns as in vertebrates. In this study we report, by qualitative and quantitative ultrastructural analyses, the features and time course of the protocerebral tract degeneration following extirpation of the optic stalk. No remarkable changes were observed seven days after lesion. After 28 days the protocerebral tracts presented apparently preserved small and large diameter axons and some degenerating medium axons, with irregular contours and empty-looking aspect of the axoplasm. Forty days after the ablation of the optic stalks, both small (type I) and medium (type II and III) axons revealed signs of partial or total degeneration, but large nerve fibers (type IV) were still intact. After 45 days, the tract showed signs of advanced stage of degeneration and, apart from large axons, normal-looking fibers were almost absent. At these 3 last time points, degenerating axons displayed different electron densities and aspects, probably correlating to different onset times of the process. In addition, cells with granules in their cytoplasm, possibly hemocytes, were quite distinct, especially at 40 and 45 days after axotomy. These cells might share with glial cells the function of phagocytosis of cellular debris during the protocerebral tract degeneration. Quantitative analysis showed that the number of degenerating fibers increased significantly from 28 to 40 days after lesion, whereas the number of normal fibers decreased accordingly. Measurements of cross-sectional areas of normal and degenerating axons showed that types II and III (medium) start to degenerate before type I (small). Type IV (large) axons do not degenerate, even after 40 days. Therefore, we can conclude that degeneration in these afferent fibers starts late after axotomy, but proceeds at a faster rate afterwards until the complete degeneration of small and medium axons.
Collapse
Affiliation(s)
- Clynton Lourenço Corrêa
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
8
|
Prinz RAD, Nakamura-Pereira M, De-Ary-Pires B, Fernandes D, Fabião-Gomes BDSV, Martinez AMB, de Ary-Pires R, Pires-Neto MA. Axonal and extracellular matrix responses to experimental chronic nerve entrapment. Brain Res 2005; 1044:164-75. [PMID: 15885215 DOI: 10.1016/j.brainres.2005.02.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 11/15/2022]
Abstract
We have analyzed the ultrastructural and histopathological changes that occur during experimental chronic nerve entrapment, as well as the immunohistochemical expression of chondroitin sulfate proteoglycan (CSPG). Adult hamsters (n = 30) were anesthetized and received a cuff around the right sciatic nerve. Animals survived for varying times (5 to 15 weeks) being thereafter perfused transcardially with fixative solutions either for immunohistochemical or electron microscopic procedures. Experimental nerves were dissected based upon the site of compression (proximal, entrapment and distal). CSPG overexpression was detected in the compressed nerve segment and associated with an increase in perineurial and endoneurial cells. Ultrastructural changes and data from semithin sections were analyzed both in control and compressed nerves. We have observed endoneurial edema, perineurial and endoneurial thickening, and whorled cell-sparse pathological structures (Renaut bodies) in the compressed nerves. Morphometrical analyses of myelinated axons at the compression sites revealed: (a) a reduction both in axon sectional area (up to 30%) and in myelin sectional area (up to 80%); (b) an increase in number of small axons (up to 60%) comparatively to the control group. Distal segment of compressed nerves presented: (a) a reduction in axon sectional area (up to 60%) and in myelin sectional area (up to 90%); (b) a decrease in axon number (up to 40%) comparatively to the control data. In conclusion, we have shown that nerve entrapment is associated with a local intraneural increase in CSPG expression, segmental demyelination, perineurial and endoneurial fibrosis, and other histopathological findings.
Collapse
Affiliation(s)
- Rafael Augusto Dantas Prinz
- Departamento de Anatomia, Universidade Federal do Rio de Janeiro, CCS, Bloco F, Cidade Universitária, 21941-590, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Beirowski B, Adalbert R, Wagner D, Grumme DS, Addicks K, Ribchester RR, Coleman MP. The progressive nature of Wallerian degeneration in wild-type and slow Wallerian degeneration (WldS) nerves. BMC Neurosci 2005; 6:6. [PMID: 15686598 PMCID: PMC549193 DOI: 10.1186/1471-2202-6-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 02/01/2005] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The progressive nature of Wallerian degeneration has long been controversial. Conflicting reports that distal stumps of injured axons degenerate anterogradely, retrogradely, or simultaneously are based on statistical observations at discontinuous locations within the nerve, without observing any single axon at two distant points. As axon degeneration is asynchronous, there are clear advantages to longitudinal studies of individual degenerating axons. We recently validated the study of Wallerian degeneration using yellow fluorescent protein (YFP) in a small, representative population of axons, which greatly improves longitudinal imaging. Here, we apply this method to study the progressive nature of Wallerian degeneration in both wild-type and slow Wallerian degeneration (WldS) mutant mice. RESULTS In wild-type nerves, we directly observed partially fragmented axons (average 5.3%) among a majority of fully intact or degenerated axons 37-42 h after transection and 40-44 h after crush injury. Axons exist in this state only transiently, probably for less than one hour. Surprisingly, axons degenerated anterogradely after transection but retrogradely after a crush, but in both cases a sharp boundary separated intact and fragmented regions of individual axons, indicating that Wallerian degeneration progresses as a wave sequentially affecting adjacent regions of the axon. In contrast, most or all WldS axons were partially fragmented 15-25 days after nerve lesion, WldS axons degenerated anterogradely independent of lesion type, and signs of degeneration increased gradually along the nerve instead of abruptly. Furthermore, the first signs of degeneration were short constrictions, not complete breaks. CONCLUSIONS We conclude that Wallerian degeneration progresses rapidly along individual wild-type axons after a heterogeneous latent phase. The speed of progression and its ability to travel in either direction challenges earlier models in which clearance of trophic or regulatory factors by axonal transport triggers degeneration. WldS axons, once they finally degenerate, do so by a fundamentally different mechanism, indicated by differences in the rate, direction and abruptness of progression, and by different early morphological signs of degeneration. These observations suggest that WldS axons undergo a slow anterograde decay as axonal components are gradually depleted, and do not simply follow the degeneration pathway of wild-type axons at a slower rate.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Center for Molecular Medicine Cologne (CMMC) and Institute for Genetics, University of Cologne, Zuelpicher Strasse 47, D-50647 Cologne, Germany
- Department of Anatomy I, University of Cologne, Joseph-Stelzmann Strasse 9, D-50931 Cologne, Germany
| | - Robert Adalbert
- Center for Molecular Medicine Cologne (CMMC) and Institute for Genetics, University of Cologne, Zuelpicher Strasse 47, D-50647 Cologne, Germany
- Babraham Institute, Babraham, Cambridge CB2 4 AT, UK
| | - Diana Wagner
- Center for Molecular Medicine Cologne (CMMC) and Institute for Genetics, University of Cologne, Zuelpicher Strasse 47, D-50647 Cologne, Germany
| | - Daniela S Grumme
- Center for Molecular Medicine Cologne (CMMC) and Institute for Genetics, University of Cologne, Zuelpicher Strasse 47, D-50647 Cologne, Germany
| | - Klaus Addicks
- Department of Anatomy I, University of Cologne, Joseph-Stelzmann Strasse 9, D-50931 Cologne, Germany
| | - Richard R Ribchester
- Division of Neuroscience, University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Michael P Coleman
- Center for Molecular Medicine Cologne (CMMC) and Institute for Genetics, University of Cologne, Zuelpicher Strasse 47, D-50647 Cologne, Germany
- Babraham Institute, Babraham, Cambridge CB2 4 AT, UK
| |
Collapse
|
10
|
Araújo Couto L, Sampaio Narciso M, Hokoç JN, Blanco Martinez AM. Calpain inhibitor 2 prevents axonal degeneration of opossum optic nerve fibers. J Neurosci Res 2004; 77:410-9. [PMID: 15248297 DOI: 10.1002/jnr.20170] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ultrastructural change that characterizes the onset of Wallerian degeneration is the disintegration of axoplasmic microtubules and neurofilaments, which are converted into an amorphous and granular material, followed by myelin breakdown. The mechanism underlying such processes is an increase in the amount of intracellular calcium, leading to activation of proteases called calpains. The aim of this study was to evaluate by quantitative ultrastructural analysis whether nerve fibers can be preserved by the use of an exogenous inhibitor of these proteases (calpain inhibitor-2, Mu-F-hF-FMK), after optic nerve crush. For that, the left optic nerves of opossums, Didelphis aurita, were crushed with the aid of a fine forceps, and half of them received a calpain inhibitor mixed with Elvax resin. Ninety-six hours after the lesion, the animals were reanesthetized and transcardially perfused, and the optic nerves were removed, the right ones being used as normal nerves. Afterward, the optic nerves were dissected and processed for routine transmission electron microscopy and quantitative and statistical analysis. The results of this analysis showed that the group that received the calpain inhibitor presented a reduction of astrogliosis, maintaining the optic nerve structure in an organized state; a significant decrease in the number of degenerating fibers; and a significant increase in the number of fibers with preserved cytoskeleton and preservation of axonal and myelin area and integrity, reducing the enlargement and edema of the axon. In conclusion, our findings suggest that calpain inhibitor is able to provide neuroprotection of the central nervous system fibers after a crush lesion.
Collapse
Affiliation(s)
- Luciana Araújo Couto
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | | | | |
Collapse
|
11
|
Setton-Avruj CP, Aquino JB, Goedelman CJ, Soto EF, Villar MJ. P0 and myelin basic protein-like immunoreactivities following ligation of the sciatic nerve in the rat. Neurochem Res 2002; 27:1293-303. [PMID: 12512935 DOI: 10.1023/a:1021663414122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this work we analyzed variations in the expression of MBPs and P0 in ligated sciatic nerves of young and adult rats at 3, 7, and 14 days postligation (PL), by immunohistochemistry and SDS-PAGE of isolated myelin. A protein redistribution was seen in the distal stump of ligated nerves with the appearance of immunoreactive clusters. Using the KS400 image analyzer, immunostained area values were obtained from the different nerves dissected. In adult rats, there was an increase of the immunostained area for MBP from 3 to 7 days PL, coincident with a reorganization of the marker in clusters, followed by a marked decrease at 14 days. P0 immunolabeling gave similar results without, however, a decrease of the immunostained area at the longer survival time tested. Young animals showed an acceleration in the process of protein redistribution and digestion within ligated nerves, which followed a similar pattern as that of adult animals. Analysis by electrophoresis showed a marked decrease in P0 and MBP at 7 days PL in young rats and 14 days PL in adult rats. The functional significance of protein clustering within myelin in injured nerves deserves further analysis.
Collapse
Affiliation(s)
- C Patricia Setton-Avruj
- Department of Biochemistry, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, IQUIFIB-CONICET, Junín 956, 1113, Argentina
| | | | | | | | | |
Collapse
|
12
|
Narciso MS, Hokoç JN, Martinez AM. Watery and dark axons in Wallerian degeneration of the opossum's optic nerve: different patterns of cytoskeletal breakdown? AN ACAD BRAS CIENC 2001; 73:231-43. [PMID: 11404785 DOI: 10.1590/s0001-37652001000200008] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this paper we report a qualitative morphological analysis of Wallerian degeneration in a marsupial. Right optic nerves of opossums Didelphis marsupialis were crushed with a fine forceps and after 24, 48, 72, 96 and 168 hours the animals were anaesthetized and perfused with fixative. The optic nerves were immersed in fixative and processed for routine transmission electron microscopy. Among the early alterations typical of axonal degeneration, we observed nerve fibers with focal degeneration of the axoplasmic cytoskeleton, watery degeneration and dark degeneration, the latter being prevalent at 168 hours after crush. Our results point to a gradual disintegration of the axoplasmic cytoskeleton, opposed to the previous view of an "all-or-nothing" process (Griffin et al 1995). We also report that, due to an unknown mechanism, fibers show either a dark or watery pattern of axonal degeneration, as observed in axon profiles. We also observed fibers undergoing early myelin breakdown in the absence of axonal alterations.
Collapse
Affiliation(s)
- M S Narciso
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-590 Brazil
| | | | | |
Collapse
|