1
|
Namazzi R, Bond C, Conroy AL, Datta D, Tagoola A, Goings MJ, Jang JH, Ware RE, Opoka R, John CC. Hydroxyurea reduces infections in children with sickle cell anemia in Uganda. Blood 2024; 143:1425-1428. [PMID: 38169476 PMCID: PMC11033589 DOI: 10.1182/blood.2023021575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
ABSTRACT After starting hydroxyurea treatment, Ugandan children with sickle cell anemia had 60% fewer severe or invasive infections, including malaria, bacteremia, respiratory tract infections, and gastroenteritis, than before starting hydroxyurea treatment (incidence rate ratio, 0.40 [95% confidence interval, 0.29-0.54]; P < .001).
Collapse
Affiliation(s)
- Ruth Namazzi
- Department of Pediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
| | - Caitlin Bond
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN
| | - Andrea L. Conroy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN
| | - Dibyadyuti Datta
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN
| | - Abner Tagoola
- Department of Pediatrics, Jinja Regional Referral Hospital, Jinja, Uganda
| | - Michael J. Goings
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN
| | - Jeong Hoon Jang
- Underwood International College and Department of Applied Statistics, Yonsei University, Seoul, Korea
| | - Russell E. Ware
- Division of Hematology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | | | - Chandy C. John
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
2
|
Virgous C, Lyons L, Sakwe A, Nayyar T, Goodwin S, Hildreth J, Osteen K, Bruner-Tran K, Alawode O, Bourne P, Hills ER, Archibong AE. Resumption of Spermatogenesis and Fertility Post Withdrawal of Hydroxyurea Treatment. Int J Mol Sci 2023; 24:ijms24119374. [PMID: 37298325 DOI: 10.3390/ijms24119374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Hydroxyurea (HU), a drug for treating cancers of the blood and the management of sickle cell anemia, induces hypogonadism in males. However, the impact of HU on testicular architecture and function, as well as its effects on the resumption of male fertility following treatment withdrawal, remain poorly understood. We used adult male mice to determine whether HU-induced hypogonadism is reversible. Fertility indices of mice treated with HU daily for ~1 sperm cycle (2 months) were compared with those of their control counterparts. All indices of fertility were significantly reduced among mice treated with HU compared to controls. Interestingly, significant improvements in fertility indices were apparent after a 4-month withdrawal from HU treatment (testis weight: month 1 post-HU withdrawal (M1): HU, 0.09 ± 0.01 vs. control, 0.33 ± 0.03; M4: HU, 0.26 ± 0.03 vs. control, 0.37 ± 0.04 g); sperm motility (M1: HU,12 vs. 59; M4: HU, 45 vs. control, 61%; sperm density (M1: HU, 1.3 ± 0.3 vs. control, 15.7 ± 0.9; M4: HU, 8.1 ± 2.5 vs. control, 16.8 ± 1.9 million). Further, circulating testosterone increased in the 4th month following HU withdrawal and was comparable to that of controls. When a mating experiment was conducted, recovering males sired viable offspring with untreated females albeit at a lower rate than control males (p < 0.05); therefore, qualifying HU as a potential candidate for male contraception.
Collapse
Affiliation(s)
- Carlos Virgous
- Animal Care Facility, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37209, USA
| | - Letitia Lyons
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Amos Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Tultul Nayyar
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Shawn Goodwin
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - James Hildreth
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Kevin Osteen
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kaylon Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Oluwatobi Alawode
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Phillip Bourne
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Edward Richard Hills
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| | - Anthony E Archibong
- Department of Obstetrics and Gynecology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, 1005 D.B. Todd Blvd, Nashville, TN 37208, USA
| |
Collapse
|
3
|
El-Saber Batiha G, Magdy Beshbishy A, Stephen Adeyemi O, Nadwa E, Rashwan E, Yokoyama N, Igarashi I. Safety and efficacy of hydroxyurea and eflornithine against most blood parasites Babesia and Theileria. PLoS One 2020; 15:e0228996. [PMID: 32053698 PMCID: PMC7018007 DOI: 10.1371/journal.pone.0228996] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 01/27/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The plenteous resistance to and undesirable consequences of the existing antipiroplasmic therapies have emphasized the urgent need for new chemotherapeutics and drug targets for both prophylaxis and chemotherapy. Hydroxyurea (HYD) is an antineoplastic agent with antitrypanosomal activity. Eflornithine (α-difluoro-methyl ornithine, DFMO) is the best choice therapy for the treatment of late-stage Gambian human African trypanosomiasis. METHODS In this study, the inhibitory and combination efficacy of HYD and DFMO with existing babesicidal drugs (diminazene aceturate (DA), atovaquone (ATV), and clofazimine (CLF)) deoxyribonucleotide in vitro against the multiplication of Babesia and Theileria. As well as, their chemotherapeutic effects were assessed on B. microti strain that infects rodents. The Cell Counting Kits-8 (CCK-8) test was used to examine their cytotoxicity on human foreskin fibroblast (HFF), mouse embryonic fibroblast (NIH/3T3), and Madin-Darby bovine kidney (MDBK) cells. FINDINGS HYD and DFMO suppressed the multiplication of all tested species (B. bigemina, B. bovis, B. caballi, B. divergens, and T. equi) in a dose-related manner. HFF, NIH/3T3, or MDBK cell viability was not influenced by DFMO at 1000 μM, while HYD affected the MDBK cell viability at EC50 value of 887.5±14.4 μM. The in vitro combination treatments of DFMO and HYD with CLF, DA, and ATV exhibited synergistic and additive efficacy toward all tested species. The in vivo experiment revealed that HYD and DFMO oral administration at 100 and 50 mg/kg inhibited B. microti multiplication in mice by 60.1% and 78.2%, respectively. HYD-DA and DFMO-DA combined treatments showed higher chemotherapeutic efficacy than their monotherapies. CONCLUSION These results indicate the prospects of HYD and DFMO as drug candidates for piroplasmosis treatment, when combined mainly with DA, ATV, and CLF. Therefore, further studies are needed to combine HYD or DFMO with either ATV or CLF and examine their impact on B. microti infection in mice.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al-Beheira, Egypt
| | - Amany Magdy Beshbishy
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine and Toxicology Laboratory, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Eman Nadwa
- Department of Pharmacology and Therapeutics, College of Medicine, Jouf University, Jouf, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cario, Egypt
| | - Eman Rashwan
- Department of Physiology, College of Medicine, Al-Azhar University, Assuit, Egypt
- Department of Physiology, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
- * E-mail:
| |
Collapse
|
4
|
Synthesis and in vitro anti-Toxoplasma gondii activity of a new series of aryloxyacetophenone thiosemicarbazones. Mol Divers 2019; 24:1223-1234. [PMID: 31485890 DOI: 10.1007/s11030-019-09986-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
Abstract
A new series of aryloxyacetophenone thiosemicarbazones 4a-q have been synthesized as anti-Toxoplasma gondii agents. All compounds showed significant inhibitory activity against T. gondii-infected cells (IC50 values 1.09-25.19 μg/mL). The 4-fluorophenoxy derivative (4l) was the most potent compound with the highest selectivity toward host cells (SI = 19), being better than standard drug pyrimethamine. SAR study indicated that the concurrence of proper substituents on both aryl ring of phenoxyacetophenone is important for potency and safety profile. Further in vitro experiments with the representative compounds 4l and 4p revealed that these compounds at the concentration of 5 μg/mL can significantly reduce the viability of T. gondii tachyzoites, as well as their infectivity rate and intracellular proliferation, comparable to those of pyrimethamine.
Collapse
|
5
|
Gomes MAGB, Carreira GM, Souza DPV, Nogueira PMR, de Melo EJT, Maria EJ. [Study of the effect of thiosemicarbazones against Toxoplasma gondii]. C R Biol 2013; 336:203-6. [PMID: 23849723 DOI: 10.1016/j.crvi.2013.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/01/2013] [Accepted: 03/02/2013] [Indexed: 11/27/2022]
Abstract
Toxoplasmosis is a neglected disease, with an estimated occurrence of one-third of the population worldwide. Research in medicinal chemistry has for some years been pursuing the development of new drugs against toxoplasmosis, because current treatments cause serious side effects in the patient. The use of thiosemicarbazones as an alternative option for the treatment of various diseases has been published in recent years, due to their, among others, anticancer, antimalarial, antitrypanosomal, antibacterial, and antitoxoplasmosis activities, the latter being the subject of this study, which is based upon biological analyses and tests of the response of Toxoplasma gondii in the presence of thiosemicarbazones.
Collapse
Affiliation(s)
- Marco Antônio G B Gomes
- Laboratorio de Ciências Química, Universidade Estadual do Norte Fluminense, Avenue Alberto Lamego, 2000 Horto, CEP 28015620, Campos dos Goytacazes, RJ, Brésil.
| | | | | | | | | | | |
Collapse
|
6
|
Gomes MAGB, Carvalho LP, Rocha BS, Oliveira RR, de Melo EJT, Maria EJ. Evaluating anti-Toxoplasma gondii activity of new serie of phenylsemicarbazone and phenylthiosemicarbazones in vitro. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0347-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Tripathi K, Mor V, Bairwa NK, Del Poeta M, Mohanty BK. Hydroxyurea treatment inhibits proliferation of Cryptococcus neoformans in mice. Front Microbiol 2012; 3:187. [PMID: 22783238 PMCID: PMC3390589 DOI: 10.3389/fmicb.2012.00187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/08/2012] [Indexed: 01/01/2023] Open
Abstract
The fungal pathogen Cryptococcus neoformans (Cn) is a serious threat to immunocompromised individuals, especially for HIV patients who develop meningoencephalitis. For effective cryptococcal treatment, novel antifungal drugs or innovative combination therapies are needed. Recently, sphingolipids have emerged as important bioactive molecules in the regulation of microbial pathogenesis. Previously we reported that the sphingolipid pathway gene, ISC1, which is responsible for ceramide production, is a major virulence factor in Cn infection. Here we report our studies of the role of ISC1 during genotoxic stress induced by the antineoplastic hydroxyurea (HU) and methyl methanesulfonate (MMS), which affect DNA replication and genome integrity. We observed that Cn cells lacking ISC1 are highly sensitive to HU and MMS in a rich culture medium. HU affected cell division of Cn cells lacking the ISC1 gene, resulting in cell clusters. Cn ISC1, when expressed in a Saccharomyces cerevisiae (Sc) strain lacking its own ISC1 gene, restored HU resistance. In macrophage-like cells, although HU affected the proliferation of wild type (WT) Cn cells by 50% at the concentration tested, HU completely inhibited Cn isc1Δ cell proliferation. Interestingly, our preliminary data show that mice infected with WT or Cn isc1Δ cells and subsequently treated with HU had longer lifespans than untreated, infected control mice. Our work suggests that the sphingolipid pathway gene, ISC1, is a likely target for combination therapy with traditional drugs such as HU.
Collapse
Affiliation(s)
- Kaushlendra Tripathi
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | |
Collapse
|
8
|
Liesen AP, de Aquino TM, Carvalho CS, Lima VT, de Araújo JM, de Lima JG, de Faria AR, de Melo EJ, Alves AJ, Alves EW. Synthesis and evaluation of anti-Toxoplasma gondii and antimicrobial activities of thiosemicarbazides, 4-thiazolidinones and 1,3,4-thiadiazoles. Eur J Med Chem 2010; 45:3685-91. [DOI: 10.1016/j.ejmech.2010.05.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 05/03/2010] [Accepted: 05/10/2010] [Indexed: 10/19/2022]
|
9
|
Carvalho CS, Melo EJTD, Tenório RP, Góes AJS. Anti-parasitic action and elimination of intracellular Toxoplasma gondii in the presence of novel thiosemicarbazone and its 4-thiazolidinone derivatives. ACTA ACUST UNITED AC 2009; 43:139-49. [PMID: 19893994 DOI: 10.1590/s0100-879x2009005000038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 10/01/2009] [Indexed: 01/19/2023]
Abstract
Toxoplasma, which infects all eukaryotic cells, is considered to be a good system for the study of drug action and of the behavior of infected host cells. In the present study, we asked if thiosemicarbazone derivatives can be effective against tachyzoites and which morphological and ultrastructural features of host cells and parasites are associated with the destruction of Toxoplasma. The compounds were tested in infected Vero cell culture using concentration screens (0.1 to 20 mM). The final concentration of 1 mM was chosen for biological assay. The following results were obtained: 1) These new derivatives decreased T. gondii infection with an in vitro parasite IC50% of 0.2-0.7 mM, without a significant effect on host cells and the more efficient compounds were 2, 3 (thiosemicarbazone derivatives) and 4 (thiazolidinone derivative); 2) The main feature observed during parasite elimination was continuous morphological disorganization of the tachyzoite secretory system, progressive organelle vesiculation, and then complete disruption; 3) Ultrastructural assays also revealed that progressive vesiculation in the cytoplasm of treated parasites did not occur in the host cell; 4) Vesiculation inside the parasite resulted in death, but this feature occurred asynchronously in different intracellular tachyzoites; 5) The death and elimination of T. gondii was associated with features such as apoptosis-like stage, acidification and digestion of parasites into parasitophorous vacuoles. Our results suggest that these new chemical compounds are promising for the elimination of intracellular parasites by mainly affecting tachyzoite development at 1 mM concentration for 24 h of treatment.
Collapse
Affiliation(s)
- C S Carvalho
- Setor de Toxicologia Celular, Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
10
|
de Aquino TM, Liesen AP, da Silva REA, Lima VT, Carvalho CS, de Faria AR, de Araújo JM, de Lima JG, Alves AJ, de Melo EJT, Góes AJS. Synthesis, anti-Toxoplasma gondii and antimicrobial activities of benzaldehyde 4-phenyl-3-thiosemicarbazones and 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids. Bioorg Med Chem 2008; 16:446-56. [PMID: 17905587 DOI: 10.1016/j.bmc.2007.09.025] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 08/29/2007] [Accepted: 09/12/2007] [Indexed: 11/17/2022]
Abstract
In the present communication, a new series of 2-[(phenylmethylene)hydrazono]-4-oxo-3-phenyl-5-thiazolidineacetic acids (2a-p) have been synthesized. Benzaldehyde 4-phenyl-3-thiosemicarbazones substituted (1a-p) were also obtained and used as intermediate to give the title compounds. All synthesized compounds were characterized by IR, (1)H and (13)C NMR. The in vitro anti-Toxoplasma gondii activity of 1a-p and 2a-p was evaluated. The 4-thiazolidinones (2a-p) were screened for their in vitro antimicrobial activity. For anti-Toxoplasma gondii activity, in general, all compounds promoted decreases in the percentage of infected cells leading to parasite elimination. These effects on intracellular parasites also caused a decrease in the mean number of tachyzoites. In addition, most of the 4-thiazolidinones showed more effective toxicity against intracellular parasites, with IC(50) values ranging from 0.05 to 1 mM. According to results of antimicrobial activity, compounds 2f, 2l, and 2p showed best activity against Mycobacterium luteus, 2c was more active against Mycobacterium tuberculosis, and 2g, 2l, and 2n showed same activity as nistatin (standard drug) against Candida sp. (4249).
Collapse
Affiliation(s)
- Thiago M de Aquino
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Carvalho CS, Melo EJT. Acidification of the parasitophorous vacuole containing Toxoplasma gondii in the presence of hydroxyurea. AN ACAD BRAS CIENC 2006; 78:475-84. [PMID: 16936937 DOI: 10.1590/s0001-37652006000300008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 03/22/2006] [Indexed: 11/21/2022] Open
Abstract
Toxoplasma gondii multiplies within parasitophorous vacuole that is not recognized by the primary no oxidative defense of host cells, mainly represented by the fusion with acidic organelles. Recent studies have already shown that hydroxyurea arrested the intracellular parasites leading to its destruction. In the present work we investigated the cellular mechanism involved in the destruction of intracellular Toxoplasma gondii. Fluorescent vital stains were used in order to observe possible acidification of parasitophorous vacuole-containing Toxoplasma gondii in presence of hydroxyurea. Vero cells infected with tachyzoites were treated with hydroxyurea for 12, 24 or 48 hours. Fluorescence, indicative of acidification, was observed in the parasitophorous vacuole when the cultures were incubated in presence of acridine orange. LysoTracker red was used in order to determine whether lysosomes were involved in the acidification process. An intense fluorescence was observed after 12 and 24 hours of incubation with hydroxyurea, achieving it is highly intensity after 48 hours of treatment. Ultrastructural cytochemistry for localization of the acid phosphatase lysosomal enzyme was realized. Treated infected cultures showed reaction product in vesicles fusing with vacuole or associated with intravacuolar parasites. These results suggest that fusion with lysosomes and acidification of parasitophorous vacuole leads to parasites destruction in the presence pf hydroxyurea.
Collapse
Affiliation(s)
- Cristiane S Carvalho
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brasil
| | | |
Collapse
|
12
|
Tenório RP, Carvalho CS, Pessanha CS, de Lima JG, de Faria AR, Alves AJ, de Melo EJT, Góes AJS. Synthesis of thiosemicarbazone and 4-thiazolidinone derivatives and their in vitro anti-Toxoplasma gondii activity. Bioorg Med Chem Lett 2005; 15:2575-8. [PMID: 15863319 DOI: 10.1016/j.bmcl.2005.03.048] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 03/08/2005] [Accepted: 03/14/2005] [Indexed: 11/19/2022]
Abstract
Thiosemicarbazone and 4-thiazolidinone derivatives were synthesized in one and two step, respectively, from thiosemicarbazide, in satisfactory yields. Then, the synthesized compounds were submitted to evaluation against host cells infected with Toxoplasma gondii. The present studies showed that thiosemicarbazones 2 and 4-thiazolidinone derivatives 3 were effective against intracellular T. gondii.
Collapse
Affiliation(s)
- Rômulo P Tenório
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
| | | | | | | | | | | | | | | |
Collapse
|