1
|
Kırmızı D, Sehirli AÖ, Sayiner S, Orhan K, Sebai A, Aksoy U. Effects of melatonin against experimentally induced apical periodontitis in rats. AUST ENDOD J 2024; 50:218-226. [PMID: 38509787 DOI: 10.1111/aej.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Apical periodontitis is an inflammatory condition resulting from microbial invasion in the root canal system, causing periapical tissue destruction and bone resorption. This study investigated melatonin's effects, known for its antioxidant and anti-inflammatory properties, on experimentally induced apical periodontitis in rats. Three groups of rats were studied: control, apical periodontitis and apical periodontitis with melatonin treatment. Proinflammatory cytokines and enzyme levels in blood serum were measured, and micro-CT analysis assessed bone resorption. Results showed significantly elevated cytokines and enzyme levels in the apical periodontitis group compared to the control. However, in the melatonin-treated group, these levels were significantly reduced (p < 0.01-0.001). Micro-CT analysis indicated decreased periapical resorption cavity volume and surface area with melatonin treatment. This suggests that systemic melatonin administration can mitigate inflammation and reduce bone resorption in experimentally induced apical periodontitis in rats, potentially holding promise for human endodontic disease treatment pending further research.
Collapse
Affiliation(s)
- D Kırmızı
- Department of Endodontics, Faculty of Dentistry, Near East University, Nicosia, Mersin, Turkey
| | - A Ö Sehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, Nicosia, Mersin, Turkey
| | - S Sayiner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, Nicosia, Mersin, Turkey
| | - K Orhan
- Department of Maxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey
- Medical Design Application and Research Center (MEDITAM), Ankara University, Ankara, Turkey
| | - A Sebai
- Department of Endodontics, Faculty of Dentistry, Near East University, Nicosia, Mersin, Turkey
| | - U Aksoy
- Department of Endodontics, Faculty of Dentistry, Near East University, Nicosia, Mersin, Turkey
| |
Collapse
|
2
|
Han Y, Gao H, Gan X, Liu J, Bao C, He C. Roles of IL-11 in the regulation of bone metabolism. Front Endocrinol (Lausanne) 2024; 14:1290130. [PMID: 38352248 PMCID: PMC10862480 DOI: 10.3389/fendo.2023.1290130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/29/2023] [Indexed: 02/16/2024] Open
Abstract
Bone metabolism is the basis for maintaining the normal physiological state of bone, and imbalance of bone metabolism can lead to a series of metabolic bone diseases. As a member of the IL-6 family, IL-11 acts primarily through the classical signaling pathway IL-11/Receptors, IL-11 (IL-11R)/Glycoprotein 130 (gp130). The regulatory role of IL-11 in bone metabolism has been found earlier, but mainly focuses on the effects on osteogenesis and osteoclasis. In recent years, more studies have focused on IL-11's roles and related mechanisms in different bone metabolism activities. IL-11 regulates osteoblasts, osteoclasts, BM stromal cells, adipose tissue-derived mesenchymal stem cells, and chondrocytes. It's involved in bone homeostasis, including osteogenesis, osteolysis, bone marrow (BM) hematopoiesis, BM adipogenesis, and bone metastasis. This review exams IL-11's role in pathology and bone tissue, the cytokines and pathways that regulate IL-11 expression, and the feedback regulations of these pathways.
Collapse
Affiliation(s)
| | | | - Xinling Gan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | | | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Chen Z, Joseph D, Ding M, Bhujbal SP, Rajan RPS, Kim E, Park SW, Lee S, Lee TH. Synthesis and evaluation of 2-NMPA derivatives as potential agents for prevention of osteoporosis in vitro and in vivo. Eur J Med Chem 2023; 260:115767. [PMID: 37651877 DOI: 10.1016/j.ejmech.2023.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/25/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Abnormal osteoclast differentiation causes various bone disorders such as osteoporosis. Targeting the formation and activation of osteoclasts has been recognized as an effective approach for preventing osteoporosis. Herein, we synthesized eleven 2-NMPA derivatives which are (2-(2-chlorophenoxy)-N-(4-alkoxy-2-morpholinophenyl) acetamides, and evaluated their suppression effects on osteoclastogenesis in vitro by using TRAP-staining assay. Among the synthesized eleven novel 2-NMPAs, 4-(2-(2-chlorophenoxy)acetamido)-3-morpholinophenyl trifluoromethanesulfonate (11b), 4-(2-(2-chlorophenoxy) acetamido)-3-morpholinophenyl-3-(N-(2-oxo-2-((2-(phenylthio) phenyl) amino) ethyl)methylsulfonamido)benzoate (11d), and 4-(2-(2-chlorophenoxy) acetamido)-3-morpholinophenyl 4-acetamidobenzenesulfonate (11h) displayed highly inhibitory bioactivity on the differentiation of primary osteoclasts. 11h was selected for further investigation of the inhibitory effects and potential mechanism involved in the suppression of osteoclastogenesis. In vitro analysis suggested that 11h inhibited osteoclastogenesis with an IC50 of 358.29 nM, decreased the formation of F-action belts and bone resorption, without interfering cell viability and osteoblast differentiation. Furthermore, the mRNA expressions of osteoclast-specific genes such as Acp5, Nfatc1, Dc-stamp, Atp6v0d2, Mmp9, and Ctsk significantly decreased following 11h treatment. RANKL-induced osteoclast-specific proteins analysis demonstrated that 11h suppressed osteoclast differentiation by downregulating of RANKL-mediated TRAF6 expression, followed by inactivation of PI3K/AKT and IκBα/NF-κB signaling pathways. Finally, 11h inhibited ovariectomy-induced bone loss in vivo. Therefore, the current work highlighted the therapeutic potential of 11h as an anti-osteoporosis lead compound.
Collapse
Affiliation(s)
- Zhihao Chen
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Devaneyan Joseph
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Mina Ding
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Swapnil Pandurang Bhujbal
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, 426-791, Republic of Korea
| | | | - Eunae Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sang-Wook Park
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Tae-Hoon Lee
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
4
|
Hong M, Fan X, Liang S, Xiang W, Chen L, Yang Y, Deng Y, Yang M. Total Flavonoids of Bidens pilosa Ameliorates Bone Destruction in Collagen-Induced Arthritis. PLANTA MEDICA 2021; 87:550-559. [PMID: 33572002 DOI: 10.1055/a-1352-5124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rheumatoid arthritis is a chronic autoimmune disease characterized by the infiltration of synovial inflammatory cells and progressive joint destruction. Total flavonoids of Bidens pilosa have been used against inflammation in rheumatoid arthritis, but its role in bone destruction remains to be explored. The aim of this paper was to study whether total flavonoids of B. pilosa relieve the severity of collagen-induced arthritis in rats, particularly whether it regulates the production of proinflammatory cytokines and the receptor activator of nuclear factor-κB/receptor activator of nuclear factor-κB ligand/osteoprotegerin signaling pathway. In this research, a collagen-induced disease model was induced in adult rats by subcutaneous injection of collagen II. Total flavonoids of B. pilosa at different doses (40, 80, and 160 mg/kg/d) were administered intragastrically, while methotrexate (1 mg/kg/w) was injected intraperitoneally as a positive control. Paw swelling, arthritis score, and body weight were assessed and evaluated. The severity of joint damage was determined using X-ray and confirmed by histopathology. The expression levels of receptor activator of nuclear factor-κB ligand, osteoprotegerin, IL-1β, IL-17, and TNF in the serum and tissue were assayed using ELISA and immunohistochemistry. We found that total flavonoids of B. pilosa attenuated collagen-induced arthritis at the macroscopic level, and total flavonoids of B. pilosa-treated rats showed reduced paw swelling, arthritis scores, and X-ray appearance of collagen-induced arthritis in addition to improved histopathological results. These findings were consistent with reduced serum and tissue receptor activator of nuclear factor-κB ligand, TNF, IL-1β, and IL-17 levels but increased osteoprotegerin levels. Our data suggest that total flavonoids of B. pilosa attenuate collagen-induced arthritis by suppressing the receptor activator of nuclear factor-κB ligand/receptor activator of nuclear factor-κB/osteoprotegerin pathway and the subsequent production of proinflammatory cytokines. In addition, total flavonoids of B. pilosa may be a promising therapeutic candidate for the management of rheumatoid arthritis.
Collapse
Affiliation(s)
- Mengqin Hong
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xingyu Fan
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Shengxiang Liang
- Department of Social Medicine and Health Service Management, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wang Xiang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Liting Chen
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yuzhong Yang
- Department of Pathology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Yueyi Deng
- School of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Min Yang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
5
|
Chen Z, Ding M, Cho E, Seong J, Lee S, Lee TH. 2-NPPA Mitigates Osteoclastogenesis via Reducing TRAF6-Mediated c-fos Expression. Front Pharmacol 2021; 11:599081. [PMID: 33574753 PMCID: PMC7870508 DOI: 10.3389/fphar.2020.599081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/21/2020] [Indexed: 11/23/2022] Open
Abstract
Excessive bone resorption leads to bone destruction in pathological bone diseases. Osteoporosis, which occurs when osteoclast-mediated bone resorption exceeds osteoblast-mediated bone synthesis, is regarded a global health challenge. Therefore, it is of great importance to identify agents that can regulate the activity of osteoclasts and prevent bone diseases mediated mainly by bone loss. We screened compounds for this purpose and found that 2-(2-chlorophenoxy)-N-[2-(4-propionyl-1piperazinyl) phenyl] acetamide (2-NPPA) exhibited a strong inhibitory effect on osteoclastogenesis. 2-NPPA suppressed the mRNA and protein expression of several osteoclast-specific markers and blocked the formation of mature osteoclasts, reducing the F-actin ring formation and bone resorption activity. In a cell signaling point of view, 2-NPPA exhibited a significant inhibitory effect on the phosphorylation of nuclear factor kappa-B (NF-κB) and c-fos expression in vitro and prevented ovariectomy-induced bone loss in vivo. These findings highlighted the potential of 2-NPPA as a drug for the treatment of bone loss-mediated disorders.
Collapse
Affiliation(s)
- Zhihao Chen
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, South Korea
| | - Mina Ding
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, South Korea
| | - Eunjin Cho
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Jihyoun Seong
- Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, South Korea
| | - Tae-Hoon Lee
- Department of Molecular Medicine, Chonnam National University Graduate School, Gwangju, South Korea.,Department of Oral Biochemistry, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
6
|
Efficacy and Safety of Kudzu Flower-Mandarin Peel on Hot Flashes and Bone Markers in Women during the Menopausal Transition: A Randomized Controlled Trial. Nutrients 2020; 12:nu12113237. [PMID: 33105861 PMCID: PMC7690627 DOI: 10.3390/nu12113237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
This randomized controlled study aimed to assess the efficacy and safety of an extract mixture of kudzu flower and mandarin peel (KM) on hot flashes (HFs) and markers of bone turnover in women during the menopausal transition. Healthy women aged 45–60 years with the menopausal HFs were randomly assigned in a 1:1 ratio to either KM (1150 mg/day) or placebo arms for 12 weeks (n = 84). The intent-to-treat analysis found that compared with the placebo, the KM significantly attenuated HF scores (p = 0.041) and HF severities (p < 0.001), with a mean difference from baseline to week 12. The KM also improved bone turnover markers, showing a significant reduction in bone resorption CTx (p = 0.027) and a tendency of increasing bone formation OC relative to the placebo. No serious adverse events and hormonal changes were observed in both groups. These findings suggest that KM consumption may improve the quality of life in ways that are important to symptomatic menopausal women.
Collapse
|
7
|
Zhou Z, Lin Y, Pan C, Wang N, Zhou L, Shan H, Gao Y, Yu X. IL-15 deficiency alleviates steroid-induced osteonecrosis of the femoral head by impact osteoclasts via RANKL-RANK-OPG system. IMMUNITY & AGEING 2020; 17:19. [PMID: 32536957 PMCID: PMC7291529 DOI: 10.1186/s12979-020-00190-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Background Whether IL-15 is involved in the development of steroid-induced osteonecrosis of the femoral head (ONFH) is investigated. Methods C57BL/6 J and l15−/−mice were injected with methylprednisolone to induce wide type osteonecrosis (WT ON) and IL-15 deficiency osteonecrosis (IL-15−/− ON). Hematoxylin-Eosin (H&E) staining and micro-computed tomography (micro-CT) scanning was used to detect the microstructure. The differentiation and formation of osteoclasts were determined with colony-forming unit-granulocyte macrophages (CFU-GM), colony-forming unit-macrophage/mononuclear (CFU-M) per tibia, and tartrate-resistant acid phosphatase (TRACP or TRAP) positive cells. Serum interleukin (IL)-15, osteocalcin, bone alkaline phosphatase (BAP), bone Gla protein (BGP), and TRACP were assayed with enzyme-linked immunosorbent assay (ELISA). The receptor activator of nuclear factor-κB (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) in the femoral heads were detected by Western blot. CD34 staining was performed to detect microvascular density. Results IL-15 secretion was increased in the femoral heads and the serum of steroid-induced ONFH mice. IL-15 deficiency may lead to up-regulated vessel remodeling, improved microstructure, and up-regulated serum osteocalcin, BAP, and BGP secretion. Both the expression of RANKL/RANK/OPG and osteoclast differentiation and formation can be down-regulated by IL-15 deficiency. Conclusion IL-15 deficiency alleviates steroid-induced ONFH by impact osteoclasts via RANKL-RANK-OPG system.
Collapse
Affiliation(s)
- Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| | - Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| | - Chenhao Pan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| | - Nan Wang
- Department of Emergency, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lihui Zhou
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo, 315700 Zhejiang China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233 China
| |
Collapse
|
8
|
Sheng Z, Wang S, Zhang X, Li X, Li B, Zhang Z. Long-Term Exposure to Low-Dose Lead Induced Deterioration in Bone Microstructure of Male Mice. Biol Trace Elem Res 2020; 195:491-498. [PMID: 31407216 DOI: 10.1007/s12011-019-01864-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/04/2019] [Indexed: 10/26/2022]
Abstract
The aim of this study was to investigate the long-term effects of low-dose lead exposure on bone microstructure in mice. Ten SPF 12-week-old male C57BL/6J mice were randomly divided into two groups: control (deionized water) and lead exposure (150 ppm of lead acetate in drinking water). After 24 weeks treatment, mice were weighed and the left femurs were collected and stored at - 80 °C. The right femurs of the mice were scanned by Micro-CT for three-dimensional reconstruction, and bone mineral density, bone volume fraction, trabeculae thickness, trabeculae number, and trabeculae separation were measured. The right tibia was collected to investigate histopathological changes in H&E-stained sections. The gene expression of osteoprotegerin (OPG), RANKL, and runt-related transcription factor 2 (Runx2) was determined using real-time PCR. The bone density of femoral cancellous bone and the number of cancellous bone trabeculae in the lead exposure group were both significantly decreased compared with the control group. Bone marrow stromal cell numbers were decreased following lead administration, and lipid droplet vacuoles were observed in the lead group. Levels of OPG were significantly decreased in the lead group, and lead also inhibited the expression of Runx2 compared with the control group. Long-term exposure to low doses of lead can cause bone damage without inducing other obvious symptoms through decreasing bone density and the number of cancellous bone trabeculae, further suppressing bone formation. It suggests that lead may exacerbate bone loss and osteoporosis, especially in the elderly.
Collapse
Affiliation(s)
- Zhijie Sheng
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Shuai Wang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiang Zhang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Xiaoyin Li
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Bingyan Li
- Experimental Center of Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China
| | - Zengli Zhang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
9
|
Song X, Zhang Y, Dai E. Therapeutic targets of thunder god vine (Tripterygium wilfordii hook) in rheumatoid arthritis (Review). Mol Med Rep 2020; 21:2303-2310. [PMID: 32323812 DOI: 10.3892/mmr.2020.11052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/02/2020] [Indexed: 11/05/2022] Open
Abstract
Celastrol and triptolide, chemical compounds isolated from Tripterygium wilfordii hook (also known as thunder god vine), are effective against rheumatoid arthritis (RA). Celastrol targets numerous signaling pathways involving NF‑κB, endoplasmic reticulum Ca2+‑ATPase, myeloid differentiation factor 2, toll‑like receptor 4, pro‑inflammatory chemokines, DNA damage, cell cycle arrest and apoptosis. Triptolide, inhibits NF‑κB, the receptor activator of NF‑κB (RANK)/RANK ligand/osteoprotegerin signaling pathway, cyclooxygenase‑2, matrix metalloproteases and cytokines. The present review examined the chemistry and bioavailability of celastrol and triptolide, and their molecular targets in treating RA. Clinical studies have demonstrated that T. wilfordii has several promising bioactivities, but its multi‑target toxicity has restricted its application. Thus, dosage control and structural modification of T. wilfordii are required to reduce the toxicity. In this review, future directions for research into these promising natural products are discussed.
Collapse
Affiliation(s)
- Xinqiang Song
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Yu Zhang
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| | - Erqin Dai
- Department of Biological Sciences, Xinyang Normal University, Xinyang, Henan 464000, P.R. China
| |
Collapse
|
10
|
Amin N, Clark CCT, Taghizadeh M, Djafarnejad S. Zinc supplements and bone health: The role of the RANKL-RANK axis as a therapeutic target. J Trace Elem Med Biol 2020; 57:126417. [PMID: 31653549 DOI: 10.1016/j.jtemb.2019.126417] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND To this day, empirical data suggests that zinc has important roles in matrix synthesis, bone turnover, and mineralization and its beneficial effects on bone could be mediated through different mechanisms. The influence of zinc on bone turnover could be facilitated via regulating RANKL/RANK/OPG pathway in bone tissue. Therefore, the aim of the study was to conduct a review to investigate the possible effect of the zinc mediated bone remodeling via RANKL/RANK/OPG pathway. METHODS A comprehensive systematic search was performed in MEDLINE/PubMed, Cochrane Library, SCOPUS, and Google Scholar to explore the studies investigating the effect of zinc as a bone remodeling factor via RANKL/RANK/OPG pathway regulation. Subsequently, the details of the pathway and the impact of zinc supplements on RANKL/RANK/OPG pathway regulation were discussed. RESULTS The pathway could play an important role in bone remodeling and any imbalance between RANKL/RANK/OPG components could lead to extreme bone resorption. Although the outcomes of some studies are equivocal, it is evident that zinc possesses protective properties against bone loss by regulating the RANKL/RANK/OPG pathway. There are several experiments where zinc supplementation resulted in upregulation of OPG expression or decreases RANKL level. However, the results of some studies oppose this. CONCLUSION It is likely that sufficient zinc intake will elicit positive effects on bone health by RANKL/RANK/OPG regulation. Although the outcomes of a few studies are equivocal, it seems that zinc can exert the protective properties against bone loss by suppressing osteoclastogenesis via downregulation of RANKL/RANK. Additionally, there are several experiments where zinc supplementation resulted in upregulation of OPG expression. However, the results of limited studies oppose this. Therefore, aside from the positive role zinc possesses in preserving bone mass, further effects of zinc in RANKL/RANK/OPG system requires further animal/human studies.
Collapse
Affiliation(s)
- Negin Amin
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Cain C T Clark
- Centre for Sport, Exercise, and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Sadegh Djafarnejad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Tandiyo DK, Haryadi RD, Probandari A, Tamtomo DG. Radial extracorporeal shockwave therapy on calcaneal spurs: a randomized controlled trial. MEDICAL JOURNAL OF INDONESIA 2019. [DOI: 10.13181/mji.v28i4.3039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND The effectiveness of extracorporeal shockwave therapy (ESWT) in handling pain and calcaneal spurs is still controversial, whereas research on the effectiveness of ESWT in the reactive ossification process of calcaneal spurs, involving osteoprotegerin (OPG) and the receptor activator of nuclear factor-kappa B (RANK), does not exist. This study was aimed to assess the effect of ESWT on pain, the length of the spur, plasma OPG and RANK level on the calcaneal spur.
METHODS This study was a randomized controlled trial in patients with calcaneal spurs. ESWT was administered at the pain point by applying 2,000 shocks, at an intensity of 2 bars, given six times with a 7–10-day interval. The visual analog scale (VAS) data, plasma OPG and RANK level were analyzed using Mann–Whitney U test, whereas spur size was analyzed using chi-square test.
RESULTS One month after therapy at rest (p < 0.001) and when walking after getting up (p = 0.020), the VAS was lower than that in the control group. The plasma OPG level was lower than control group shortly after therapy (p < 0.001). The plasma RANK level was higher than control group shortly after therapy (p < 0.001). ESWT did not affect the reduction of spur measurement (p = 0.382).
CONCLUSIONS ESWT reduced pain, decreased plasma OPG level, and increased plasma RANK level. Although ESWT did not have any effect on spur reduction, it affected plasma OPG and RANK level that play a role in the activity of osteoblasts and osteoclasts.
Collapse
|
12
|
Uluköylü E, Karataş E, Albayrak M, Bayır Y. Effect of Calcium Hydroxide Alone or in Combination with Ibuprofen and Ciprofloxacin on Nuclear Factor Kappa B Ligand and Osteoprotegerin Level in Periapical Lesions: A Randomized Controlled Clinical Study. J Endod 2019; 45:1489-1495. [DOI: 10.1016/j.joen.2019.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 08/02/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
|
13
|
Li X, Ning L, Ma J, Xie Z, Zhao X, Wang G, Wan X, Qiu P, Yao T, Wang H, Fan S, Wan S. The PPAR-γ antagonist T007 inhibits RANKL-induced osteoclastogenesis and counteracts OVX-induced bone loss in mice. Cell Commun Signal 2019; 17:136. [PMID: 31655621 PMCID: PMC6815399 DOI: 10.1186/s12964-019-0442-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/20/2019] [Indexed: 02/12/2023] Open
Abstract
Background Osteoclasts are key determinant cellular components implicated in the development and progression of disorders driven by bone damage. Herein, we studied the upshot of T007, an antagonist of peroxisome proliferator-activated receptor-gamma (PPARγ), on osteoclastogenesis using cell and animal models. Results The in vitro assays revealed that T007 hindered the osteoclastogenesis caused by the treatment with the receptor activator of nuclear factor-κB ligand (RANKL) through inhibiting the levels of PPARγ in cells. The PPARγ siRNA partially reproduced the inhibitory action of T007. The opposite findings were produced after PPARγ overexpression. Furthermore, T007 prevented from bone loss in a mouse model of osteoporosis induced by ovariectomy (OVX). These findings implied that T007 is a potential efficient drug for the prophylaxis and cure of osteoclast-related disorders. Conclusions Taken together, our findings demonstrated that T007 impedes osteoclastogenesis and will be useful for the therapy of bone related diseases, essentially osteoporosis.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China
| | - Lei Ning
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China
| | - Xiangde Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China
| | - Gangliang Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China
| | - Xinyu Wan
- First Clinical Medical College, Wenzhou Medical University, Wenzhou, 325035, China
| | - Pengcheng Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China
| | - Haoming Wang
- The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China.
| | - Shuanglin Wan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, China.
| |
Collapse
|
14
|
The association between RANK, RANKL and OPG gene polymorphisms and the risk of rheumatoid arthritis: a case-controlled study and meta-analysis. Biosci Rep 2019; 39:BSR20182356. [PMID: 31209146 PMCID: PMC6597846 DOI: 10.1042/bsr20182356] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/22/2019] [Accepted: 06/11/2019] [Indexed: 12/29/2022] Open
Abstract
The receptor activator of nuclear factor-κB (RANK) and the osteoprotegerin (OPG) cascade system have been reported to be essential in osteoclastogenesis. In recent years, several studies have investigated the association between polymorphisms of RANK, its ligand RANKL and OPG genes and the risk of rheumatoid arthritis (RA) in different populations. However, the results arising from these studies were conflicting. To determine the association between RANK, RANKL and OPG gene polymorphisms and the risk of RA. We conducted a hospital-based case-controlled study in Changzhou with 574 RA cases and 804 controls. The genotyping of RANK gene rs1805034 polymorphism was conducted by single base extension combined with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). We also undertook a meta-analysis of the literature referring to polymorphisms of RANK, RANKL and OPG genes and RA risk. This case-controlled study found that the polymorphism in the RANK gene rs1805034 was not related to RA risk. Stratification analyses by sex and age suggested that RANK gene rs1805034 polymorphism was not associated with the risk of RA among groups of male, female, age ≤ 55 and age > 55. Our meta-analysis found that the rs2277438 polymorphism in RANKL gene increased the risk of RA, whereas RANK gene rs1805034, OPG gene rs3102735, OPG gene rs2073618, OPG gene rs3134069 polymorphisms were not related to RA susceptibility. In conclusion, this case-controlled study and meta-analysis indicated that the RANKL gene rs2277438 polymorphism increased the RA risk, and that RANK gene rs1805034, OPG gene rs3102735, OPG gene rs2073618, OPG gene rs3134069 polymorphisms were not related to RA risk.
Collapse
|
15
|
Sarıtekin E, Üreyen Kaya B, Aşcı H, Özmen Ö. Anti-inflammatory and antiresorptive functions of melatonin on experimentally induced periapical lesions. Int Endod J 2019; 52:1466-1478. [PMID: 31063611 DOI: 10.1111/iej.13138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/01/2019] [Indexed: 12/30/2022]
Abstract
AIM To investigate the effects of systemically administered melatonin on inflammation and alveolar bone resorption in rats with experimentally induced periapical lesions. METHODOLOGY Thirty adult Sprague Dawley rats were divided equally into negative, positive control and melatonin groups. The pulp chambers of their mandibular first molars were exposed to the oral environment to induce experimental periapical lesions in the positive control and melatonin groups. The melatonin group received daily intraperitoneal injections of melatonin at a dose of 10 mg kg-1 . After 21 days, the animals were euthanized; the hemi-mandible parts were prepared for radiological, histopathological, immunohistochemical (IL-1β, RANK, RANKL, OPG and tartrate-resistant acid phosphatase (TRAP) and Brown-Brenn (bacteria) evaluations. Data were analysed by Kruskal-Wallis (for non-parametric data) and one-way anova tests (for parametric data) (P < 0.05). RESULTS The area of radiographic periapical bone loss was significantly smaller in rats that were given daily intraperitoneal injections of melatonin (P < 0.01). The histopathological scores of the melatonin group were significantly lower than those of positive control group (P < 0.01). Histomorphometrically, the area of periapical bone loss in the melatonin group was significantly smaller than the positive control group (P < 0.01). The expression of IL1-β, RANK and RANKL was significantly higher in the positive control group, whereas OPG was significantly higher in the melatonin group (P < 0.01). The number of osteoclasts was significantly greater in the positive control group by TRAP staining analyses (P < 0.01). The scores for bacteria localization using Brown-Brenn staining in the melatonin group was significantly lower than that of the positive control group (P < 0.01). CONCLUSIONS Melatonin demonstrated antiresorptive effects on bone associated with experimentally induced periapical lesions in rats via its anti-inflammatory activity. Further studies are necessary to evaluate its possible effects on the healing of periapical lesions.
Collapse
Affiliation(s)
- E Sarıtekin
- Department of Endodontics, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - B Üreyen Kaya
- Department of Endodontics, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - H Aşcı
- Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Ö Özmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
16
|
Lv YJ, Wei QZ, Zhang YC, Huang R, Li BS, Tan JB, Wang J, Ling HT, Wu SX, Yang XF. Low-dose cadmium exposure acts on rat mesenchymal stem cells via RANKL/OPG and downregulate osteogenic differentiation genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:620-628. [PMID: 30933759 DOI: 10.1016/j.envpol.2019.03.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/02/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Chronic cadmium (Cd) toxicity is a significant health concern, and the mechanism of long-term low-dose Cd exposure on bone has not been fully elucidated till date. This study aimed to assess the association between rat mesenchymal stem cells (MSCs) and long-term Cd exposure through 38-week intake of CdCl2 at 1 and 2 mg/kg body weight (bw). Increased gene expression of receptor activator of NF-κB ligand (RANKL) and decreased gene expression of osteoprotegerin (OPG) were observed. Fold change of RANKL gene expression (fold change = 1.97) and OPG gene expression (fold change = 1.72) showed statistically significant differences at dose 2 mg/kg bw. Decreased expression of key genes was observed during the early osteogenic differentiation of MSCs. The gene expression of Osterix in 1 mg/kg bw group was decreased by 3.70-fold, and the gene expressions of Osterix, Osteopontin, collagen type I alpha 2 chain (COL1a2) and runt-related transcription factor 2 (RUNX2) in 2 mg/kg bw group were decreased by 1.79, 1.67, 1.45 and 1.35-folds, respectively. Exposure to CdCl2 induced an increase in the renal Cd load, but only an adaptive response was observed, including increased expression of autophagy-related proteins LC3B and Beclin-1, autophagy receptor p62, and heme oxygenase 1 (HO-1), which is an inducible isoform that releases in response to stress. There were no significant changes in the urinary low molecular weight proteins including N-acetyl-b-D-glucosaminidase (NAG), β2-microglobulin and albumin (U-Alb). Urinary calcium (Ca) excretion showed no increase, and no obvious renal histological changes. Taken together, these results indicated that the chronic CdCl2 exposure directly act on MSCs through RANKL/OPG pathway and downregulate the key genes involved in osteogenic differentiation of MSCs. The toxic effect of Cd on bone may occur in parallel to nephrotoxicity.
Collapse
Affiliation(s)
- Ying-Jian Lv
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qin-Zhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yang-Cong Zhang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Rui Huang
- Guangdong Provincial Institute of Public Health, Guangzhou, Guangdong, China
| | - Bai-Sheng Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jian-Bin Tan
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Jing Wang
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Hai-Tuan Ling
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Shi-Xuan Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Xing-Fen Yang
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Fernandes CJDC, Veiga MR, Peracoli MTS, Zambuzzi WF. Modulatory effects of silibinin in cell behavior during osteogenic phenotype. J Cell Biochem 2019; 120:13413-13425. [DOI: 10.1002/jcb.28616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Célio Jr. da Costa Fernandes
- Department of Chemistry and Biochemistry, Laboratory of Bioassays and Cell Dynamics, Institute of Biosciences Sao Paulo State University ‐ UNESP Botucatu São Paulo Brazil
| | - Mariana R. Veiga
- Department of Microbiology and Immunology, Institute of Biosciences Sao Paulo State University ‐ UNESP Botucatu São Paulo Brazil
| | - Maria Terezinha Serrão Peracoli
- Department of Microbiology and Immunology, Institute of Biosciences Sao Paulo State University ‐ UNESP Botucatu São Paulo Brazil
| | - Willian F. Zambuzzi
- Department of Chemistry and Biochemistry, Laboratory of Bioassays and Cell Dynamics, Institute of Biosciences Sao Paulo State University ‐ UNESP Botucatu São Paulo Brazil
| |
Collapse
|
18
|
Lee BN, Hong JU, Kim SM, Jang JH, Chang HS, Hwang YC, Hwang IN, Oh WM. Anti-inflammatory and Osteogenic Effects of Calcium Silicate–based Root Canal Sealers. J Endod 2019; 45:73-78. [DOI: 10.1016/j.joen.2018.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/19/2018] [Accepted: 09/09/2018] [Indexed: 10/27/2022]
|
19
|
Chen CH, Chen WC, Lin CY, Chen CH, Tsuang YH, Kuo YJ. Sintered dicalcium pyrophosphate treatment attenuates estrogen deficiency-associated disc degeneration in ovariectomized rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3033-3041. [PMID: 30271118 PMCID: PMC6151093 DOI: 10.2147/dddt.s170816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background Estrogen deficiency is associated with musculoskeletal disorders. Sintered dicalcium pyrophosphate (SDCP) is a novel antiosteoporotic agent. In this study, we examined its use for restoration of bone quality and attenuation of disc degeneration in ovariectomy rats. Methods Sixty female Sprague Dawley rats were randomly divided into 3 groups, namely sham group undergoing sham surgery, ovariectomy (OVX) group receiving an equivalent volume of isotonic sodium chloride solution, and OVX/SDCP group orally administered with 0.25 mg/mL SDCP. Animals were sacrificed at 3 and 6 months post ovariectomy and lumbar vertebrae and intervertebral discs were harvested. Bone mineral density, micro-computed tomography analysis, and biomechanical testing were performed to assess bone quality. Histological analysis with hematoxylin and eosin, Alcian blue, and Masson’s trichrome stain were conducted to determine disc degeneration. Immunohistochemistry and real-time PCR were carried out to measure the expressions of aggrecan, type I collagen, type II collagen, and MMP-1, MMP-3, and MMP-13. Results SDCP improved bone quality as observed by the results of increased bone mineral density and stiffness in OVX rats. The improvement in disc degeneration induced by estrogen withdrawal was associated with reduced gene expressions of MMPs and increased production of collagen type II. Conclusion SDCP prevents osteoporosis and ameliorates disc degeneration in OVX rats. It represents a favorable therapeutic agent for osteoporotic and osteoarthritic conditions in clinical practice.
Collapse
Affiliation(s)
- Chia-Hsien Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, .,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chuan Chen
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan City, Taiwan
| | - Chun-Yi Lin
- Department of Orthopedic Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Hwa Chen
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, .,School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yang-Hwei Tsuang
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan,
| | - Yi-Jie Kuo
- Department of Orthopedic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, .,Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan,
| |
Collapse
|
20
|
Mansour A, Aboeerad M, Qorbani M, Hashemi Taheri AP, Pajouhi M, Keshtkar AA, Larijani B, Mohajeri-Tehrani MR, Ganji MR. Association between low bone mass and the serum RANKL and OPG in patients with nephrolithiasis. BMC Nephrol 2018; 19:172. [PMID: 29996796 PMCID: PMC6042206 DOI: 10.1186/s12882-018-0960-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 06/25/2018] [Indexed: 01/07/2023] Open
Abstract
Background Nephrolithiasis is a risk factor for Osteopenia and osteoporosis. Receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG) regulate bone remodeling and osteoclastogenesis. This study aimed to evaluate the relation between serum OPG, RANKL concentration, and bone mineral density (BMD) in patients with kidney stone disease. Methods Forty-four nephrolithiasis patients with either low bone mass or normal BMD (considered control group) were enrolled in this study. BMD was measured at lumbar spine (L1-L4) and femoral neck by dual-energy X-ray absorptiometry (DEXA). The serum OPG and RANKL were determined using the ELISA method. Results The median levels of serum OPG were significantly higher in nephrolithiasis patients with low bone mass compared to the nephrolithiasis patients with normal BMD (3.9 pmol/l versus 3.1 pmol/l; P = 0.03), respectively. Negative correlation was detected between bone densities of femoral neck and OPG in patients with nephrolithiasis (r = −.0344, P = 0.02). Conclusion The present study showed that high serum fasting OPG levels may be indicative of femoral neck BMD in patients with nephrolithiasis.
Collapse
Affiliation(s)
- Asieh Mansour
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Aboeerad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohamad Pajouhi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Keshtkar
- Department of Health Science Education Development, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Mohajeri-Tehrani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ganji
- Nephrology Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Konieczna I, Relich I, Durajski M, Lechowicz L, Chrapek M, Gaweda J, Fraczyk J, Kaminski ZJ. Novel tool in rheumatoid arthritis diagnosis-The usage of urease flap region peptidomimetics. J Pept Sci 2018; 24:e3084. [PMID: 29870122 DOI: 10.1002/psc.3084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/29/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease. Early diagnosis can prevent joint erosion. However, available biomarkers do not always allow for clear distinction between RA and non-RA individuals. It has become known that bacteria/viruses are among the environmental triggers that initiate RA via multiple molecular mechanisms. Thus, to better understand the role of bacteria in RA, we synthetized 6 peptidomimetics of bacterial ureases' flap region. These peptides were then used to distinguish RA patients from healthy people sera by immunoblotting. Most patients' sera were bound to peptidomimetic characteristic for Enterobacter sp. and Klebsiella sp. flap urease. We also found similarities between peptidomimetic sequence and human proteins connected with RA. This pilot study suggests that bacteria may trigger RA via mechanism of molecular mimicry of urease to host proteins and ureases flap peptidomimetics may be potential candidate as a new additional diagnostic test.
Collapse
Affiliation(s)
- Iwona Konieczna
- Department of Microbiology, Jan Kochanowski University, Swietokrzyska 15, 25-406, Kielce, Poland
| | - Inga Relich
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Maciej Durajski
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Lukasz Lechowicz
- Department of Microbiology, Jan Kochanowski University, Swietokrzyska 15, 25-406, Kielce, Poland
| | - Magdalena Chrapek
- Department of Probability and Statistics, Jan Kochanowski University, Swietokrzyska 15, 25-406, Kielce, Poland
| | - Jozef Gaweda
- Swietokrzyskie Rheumatology Center, St. Luke Specialized Hospital, Gimnazjalna 41B, 26-200, Konskie, Poland
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| |
Collapse
|
22
|
Noh D, Lim Y, Lee H, Kim H, Kwon O. Soybean-Hop Alleviates Estrogen Deficiency-Related Bone Loss and Metabolic Dysfunction in Ovariectomized Rats Fed a High-Fat Diet. Molecules 2018; 23:E1205. [PMID: 29772836 PMCID: PMC6100206 DOI: 10.3390/molecules23051205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Soybeans and hops have been traditionally used as a natural estrogen replacement therapy and their major active ingredients, isoflavones and prenylflavanones, are known to have estrogenic/antiestrogenic effects depending on the target organ. However, their potential benefits are still subject to controversies. The present study investigated the dual effect of soy isoflavones plus hop prenylflavanones (Soy-Hop) on bone loss and metabolic dysfunction under estrogen deficient condition. Rats were sham-operated (n = 10) or ovariectomized (OVX; n = 40) and then fed a high-fat diet (HFD) to develop hyperlipidemia in OVX rats within the experimental period of 8 weeks. The OVX/HFD rats were assigned to four groups to receive different doses of Soy-Hop (0, 30, 100, and 300 mg/kg) by oral gavage for 8 weeks. High-dose Soy-Hop significantly suppressed OVX/HFD-induced increases in food intake, body weight gain, fat mass, and circulating levels of leptin, adiponectin, LDL-cholesterol, total cholesterol, triglycerides, glucose, and insulin. High-dose Soy-Hop also attenuated OVX/HFD-induced elevation of osteocalcin, alkaline phosphatase, and CTX in plasma and RANKL/OPG gene expression ratio in femur. These findings were confirmed visually by confocal analysis of GLUT4 translocation in soleus muscle cells and micro-computed tomography scanning of the distal femoral epiphysis, respectively. These results suggest that Soy-Hop may have potential to ameliorate estrogen deficiency-related alterations in both metabolism and bone quality, at least in part, by hormonal factors secreted by adipocytes.
Collapse
Affiliation(s)
- Dasom Noh
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Yeni Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Hansol Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Hyejin Kim
- Department of Kinesiology and Sports Studies, Ewha Womans University, Seoul 03760, Korea.
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
23
|
Azuma MM, Gomes-Filho JE, Ervolino E, Pipa CB, Cardoso CDBM, Andrada AC, Kawai T, Cintra LTA. Omega 3 Fatty Acids Reduce Bone Resorption While Promoting Bone Generation in Rat Apical Periodontitis. J Endod 2017; 43:970-976. [PMID: 28359664 DOI: 10.1016/j.joen.2017.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION This study evaluated the effects of the dietary supplement omega 3 polyunsaturated fatty acids (ω-3 PUFAs) on pulp exposure-induced apical periodontitis (AP) in rats. METHODS Twenty-eight male rats were divided into groups: control untreated rats (C), control rats treated with ω-3 PUFAs alone (C-O), rats with pulp exposure-induced AP, and rats with pulp exposure-induced AP treated with ω-3 PUFAs (AP-O). The ω-3 PUFAs were administered orally, once a day, for 15 days before pulp exposure and, subsequently, 30 days after pulp exposure. Rats were killed 30 days after pulp exposure, and jaws were subjected to histologic and immunohistochemical analyses. Immunohistochemical analyses were performed to detect tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts on the bone surface of periapical area. Results were statistically evaluated by using analysis of variance and Tukey honestly significant difference, and P < .05 was considered statistically significant. RESULTS The bone resorption lesion was significantly larger in the AP group compared with AP-O, C, and C-O groups (P < .05). The level of inflammatory cell infiltration was significantly elevated, and the number of tartrate-resistant acid phosphatase-positive osteoclasts was significantly higher in the periapical lesions of the AP group compared with AP-O, C, and C-O groups (P < .05). The number of osteocalcin-positive osteoblasts was significantly increased in the AP-O group compared with the AP group (P > .05). CONCLUSIONS Supplementation with ω-3 PUFAs not only suppresses bone resorption but also promotes new bone formation in the periapical area of rats with AP in conjunction with downregulation of inflammatory cell infiltration into the lesion.
Collapse
Affiliation(s)
- Mariane Maffei Azuma
- Department of Endodontics, Araçatuba Dental School, Universidade Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil; Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts
| | - João Eduardo Gomes-Filho
- Department of Endodontics, Araçatuba Dental School, Universidade Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, Araçatuba Dental School, UNESP Universidade Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Camila Barbosa Pipa
- Department of Endodontics, Araçatuba Dental School, Universidade Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Ana Cristina Andrada
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts
| | - Toshihisa Kawai
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts; School of Dental Medicine, Harvard University, Boston, Massachusetts
| | - Luciano Tavares Angelo Cintra
- Department of Endodontics, Araçatuba Dental School, Universidade Estadual Paulista (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
24
|
Lechowicz L, Chrapek M, Gaweda J, Urbaniak M, Konieczna I. Use of Fourier-transform infrared spectroscopy in the diagnosis of rheumatoid arthritis: a pilot study. Mol Biol Rep 2016; 43:1321-1326. [PMID: 27640014 PMCID: PMC5102982 DOI: 10.1007/s11033-016-4079-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis is an autoimmune inflammatory disease leading to joint cartilage, bone degradation and limitation of mobility. Diagnosis of RA is difficult and complex. There are also no effective methods for clear discrimination between RA patients and non-RA individuals. In this work we use IR spectroscopy to differentiate RA patients and blood donors’ sera. We found differences between investigated sera (RA and non-RA) in range of 3000–2800 and 1800–800 cm−1 (W1–W5 regions). Based on mathematical analysis we developed a K-NN model characterized by 85 % of sensitivity and 100 % of specificity. Also we found that, wavenumber 1424 cm−1, comprising in W3 region, was the most effective in human sera distinguishing. We conclude that IR spectroscopy may serve as a fast and easy method useful in RA serology.
Collapse
Affiliation(s)
- Lukasz Lechowicz
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Swietokrzyska 15, 25-406, Kielce, Poland.
| | - Magdalena Chrapek
- Department of Probability and Statistics, Jan Kochanowski University, Swietokrzyska 11, 25-406, Kielce, Poland
| | - Jozef Gaweda
- Swietokrzyskie Rheumatology Center, St. Luke Specialized Hospital, Gimnazjalna 41B, 26-200, Konskie, Poland
| | - Mariusz Urbaniak
- Organic Chemistry Division, Jan Kochanowski University, Swietokrzyska 11, 25-406, Kielce, Poland
| | - Iwona Konieczna
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Swietokrzyska 15, 25-406, Kielce, Poland
| |
Collapse
|
25
|
Kalantari N, Abroun S, Soleimani M, Kaviani S, Azad M, Eskandari F, Habibi H. Effect of The Receptor Activator of Nuclear Factor кB and RANK Ligand on In Vitro Differentiation of Cord Blood CD133(+) Hematopoietic Stem Cells to Osteoclasts. CELL JOURNAL 2016; 18:322-31. [PMID: 27602313 PMCID: PMC5011319 DOI: 10.22074/cellj.2016.4559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 01/02/2016] [Indexed: 01/08/2023]
Abstract
Objective Receptor activator of nuclear factor-kappa B ligand (RANKL) appears to be
an osteoclast-activating factor, bearing an important role in the pathogenesis of multiple
myeloma. Some studies demonstrated that U-266 myeloma cell line and primary myeloma
cells expressed RANK and RANKL. It had been reported that the expression of myeloid
and monocytoid markers was increased by co-culturing myeloma cells with hematopoietic
stem cells (HSCs). This study also attempted to show the molecular mechanism of RANK
and RANKL on differentiation capability of human cord blood HSC to osteoclast, as well
as expression of calcitonin receptor (CTR) on cord blood HSC surface.
Materials and Methods In this experimental study, CD133+ hematopoietic stem cells were
isolated from umbilical cord blood and cultured in the presence of macrophage colony-stimulating factor (M-CSF) and RANKL. Osteoclast differentiation was characterized by using
tartrate-resistant acid phosphatase (TRAP) staining, giemsa staining, immunophenotyping,
and reverse transcription-polymerase chain reaction (RT-PCR) assay for specific genes.
Results Hematopoietic stem cells expressed RANK before and after differentiation into
osteoclast. Compared to control group, flow cytometric results showed an increased
expression of RANK after differentiation. Expression of CTR mRNA showed TRAP reaction was positive in some differentiated cells, including osteoclast cells.
Conclusion Presence of RANKL and M-CSF in bone marrow could induce HSCs
differentiation into osteoclast.
Collapse
Affiliation(s)
- Nasim Kalantari
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Abroun
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Kaviani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Azad
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Eskandari
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Habibi
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
26
|
Singh AK, Gajiwala AL, Rai RK, Khan MP, Singh C, Barbhuyan T, Vijayalakshmi S, Chattopadhyay N, Sinha N, Kumar A, Bellare JR. Cross-correlative 3D micro-structural investigation of human bone processed into bone allografts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:574-84. [DOI: 10.1016/j.msec.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
27
|
Mafi Golchin M, Heidari L, Ghaderian SMH, Akhavan-Niaki H. Osteoporosis: A Silent Disease with Complex Genetic Contribution. J Genet Genomics 2016; 43:49-61. [PMID: 26924688 DOI: 10.1016/j.jgg.2015.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/30/2015] [Accepted: 12/26/2015] [Indexed: 12/17/2022]
Abstract
Osteoporosis is the most common multifactorial metabolic bone disorder worldwide with a strong genetic component. In this review, the evidence for a genetic contribution to osteoporosis and related phenotypes is summarized alongside with methods used to identify osteoporosis susceptibility genes. The key biological pathways involved in the skeleton and bone development are discussed with a particular focus on master genes clustered in these pathways and their mode of action. Furthermore, the most studied single nucleotide polymorphisms (SNPs) analyzed for their importance as genetic markers of the disease are presented. New data generated by next-generation sequencing in conjunction with extensive meta-analyses should contribute to a better understanding of the genetic basis of osteoporosis and related phenotype variability. These data could be ultimately used for identifying at-risk patients for disease prevention by both controlling environmental factors and providing possible therapeutic targets.
Collapse
Affiliation(s)
- Maryam Mafi Golchin
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Laleh Heidari
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences & Health Services, Tehran 1985717443, Iran
| | - Seyyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences & Health Services, Tehran 1985717443, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4717647745, Iran.
| |
Collapse
|
28
|
Zavala-Cerna MG, Moran-Moguel MC, Cornejo-Toledo JA, Gonzalez-Montoya NG, Sanchez-Corona J, Salazar-Paramo M, Nava-Zavala AH, Aguilar-Chavez EA, Alcaraz-Lopez MF, Gonzalez-Sanchez AG, Gonzalez-Lopez L, Gamez-Nava JI. Osteoprotegerin Polymorphisms in a Mexican Population with Rheumatoid Arthritis and Generalized Osteoporosis: A Preliminary Report. J Immunol Res 2015; 2015:376197. [PMID: 26065000 PMCID: PMC4433710 DOI: 10.1155/2015/376197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/19/2022] Open
Abstract
Bone disease in rheumatoid arthritis (RA) is a complex phenomenon where genetic risk factors have been partially evaluated. The system formed by receptor activator for nuclear factor-κB (RANK), receptor activator for nuclear factor-κB ligand (RANKL), and osteoprotegerin (OPG): RANK/RANKL/OPG is a crucial molecular pathway for coupling between osteoblasts and osteoclasts, since OPG is able to inhibit osteoclast differentiation and activation. We aim to evaluate the association between SNPs C950T (rs2073617), C209T (rs3134069), T245G (rs3134070) in the TNFRSF11B (OPG) gene, and osteoporosis in RA. We included 81 women with RA and 52 healthy subjects in a cross-sectional study, genotyped them, and measured bone mineral density (BMD) at the lumbar spine and the femoral neck. Mean age in RA was 50 ± 12 with disease duration of 12 ± 8 years. According to BMD results, 23 (33.3%) were normal and 46 (66.7%) had osteopenia/osteoporosis. We found a higher prevalence of C allele for C950T SNP in RA. Polymorphisms C209T and T245G did not reach statistical significance in allele distribution. Further studies including patients from other regions of Latin America with a multicenter design to increase the sample size are required to confirm our findings and elucidate if C950T SNP could be associated with osteoporosis in RA.
Collapse
Affiliation(s)
| | - Maria Cristina Moran-Moguel
- Division de Medicina Molecular del Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, 44340 Guadalajara, JAL, Mexico
| | - Jesus Alejandro Cornejo-Toledo
- Division de Medicina Molecular del Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, 44340 Guadalajara, JAL, Mexico
| | - Norma Guadalupe Gonzalez-Montoya
- Programa de Becarios en Investigacion del Instituto Mexicano del Seguro Social, Programa de Doctorado en Farmacologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, JAL, Mexico
| | - Jose Sanchez-Corona
- Division de Medicina Molecular del Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, 44340 Guadalajara, JAL, Mexico
| | - Mario Salazar-Paramo
- Division de Investigacion en Salud, UMAE, Hospital de Especialidades, CMNO, IMSS and Departamento de Fisiologia, CUCS, Universidad de Guadalajara, 44340 Guadalajara, JAL, Mexico
| | - Arnulfo Hernan Nava-Zavala
- Programa Internacional, Facultad de Medicina, Universidad Autonoma de Guadalajara, 44100 Zapopan, JAL, Mexico
- Unidad de Investigacion en Epidemiologia Clinica, Hospital de Especialidades, Centro Medico Nacional de Occidente del Instituto Mexicano del Seguro Social, 44340 Guadalajara, JAL, Mexico
- Servicio de Medicina Interna, Inmunologia y Reumatologia, Hospital General de Occidente, Secretaria de Salud Jalisco, 45170 Guadalajara, JAL, Mexico
| | | | - Miriam Fabiola Alcaraz-Lopez
- Departamento de Medicina Interna-Reumatologia, Hospital General de Zona 14, Instituto Mexicano del Seguro Social, 44860 Guadalajara, JAL, Mexico
| | - Alicia Guadalupe Gonzalez-Sanchez
- Programa de Becarios en Investigacion del Instituto Mexicano del Seguro Social, Programa de Doctorado en Farmacologia, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, 44340 Guadalajara, JAL, Mexico
| | - Laura Gonzalez-Lopez
- Departamento de Medicina Interna-Reumatologia del Hospital General Regional No. 110, Instituto Mexicano del Seguro Social y Programa de Doctorado en Salud Publica, CUCS, Universidad de Guadalajara, 44340 Guadalajara, JAL, Mexico
| | - Jorge Ivan Gamez-Nava
- Unidad de Investigación en Epidemiologia Clinica, Hospital de Especialidades, Centro Medico Nacional de Occidente del Instituto Mexicano del Seguro Social y Programa de Doctorado en Salud Publica, CUCS, Universidad de Guadalajara, 44340 Guadalajara, JAL, Mexico
| |
Collapse
|
29
|
Bonfá AC, Seguro LPC, Caparbo V, Bonfá E, Pereira RMR. RANKL and OPG gene polymorphisms: associations with vertebral fractures and bone mineral density in premenopausal systemic lupus erythematosus. Osteoporos Int 2015; 26:1563-71. [PMID: 25609157 DOI: 10.1007/s00198-015-3029-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/04/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Premenopausal women with systemic lupus erythematosus (SLE) have a higher prevalence of low bone mineral density and vertebral fractures. Multiple genetic loci for osteoporotic fracture were identified in recent genome-wide association studies. This study provides a novel data demonstrating that receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) polymorphisms likely plays an important role in the bone remodeling process in SLE premenopausal women. INTRODUCTION The purpose of this study was to evaluate single-nucleotide polymorphisms (SNPs) of the RANKL, RANK, and OPG genes in premenopausal SLE patients and their association with sRANKL and OPG serum levels, vertebral fractures, and bone mineral density (BMD). METHODS A total of 211 premenopausal SLE patients (American College of Rheumatology (ACR) criteria) and 154 healthy controls were enrolled. SNPs of RANKL 290A>G (rs2277438), OPG 1181G>C (rs2073618), 245T>G (rs3134069), 163A>G (rs3102735), and RANK A>G (rs3018362) were obtained by real-time PCR. sRANKL/OPG serum levels were determined by ELISA. BMD and vertebral fractures were evaluated by dual-energy X-ray absorptiometry (DXA). RESULTS SLE patients and controls had similar frequencies of the RANKL 290 G allele (p = 0.94), OPG 1181 C allele (p = 0.85), OPG 245 G allele (p = 0.85), OPG 163 G allele (p = 0.78), and RANK G allele (p = 0.87). Further analysis of the SLE patients revealed that the frequency of the RANKL 290 G allele was lower in patients with fractures than that in patients without fractures (28.1 vs 46.9%, p = 0.01). In addition, the frequency of the OPG 245 G allele was higher in patients with low BMD than that in patients with normal BMD (31.4 vs 18.1%, p = 0.04). No association of OPG 1181 G>C, OPG 163 A>G, and RANK A>G SNPs with BMD/fractures was found. Additionally, no association was observed between RANKL/OPG/RANK SNPs and sRANKL/OPG serum levels. CONCLUSIONS Our study provides novel data demonstrating that RANKL/OPG genetic variations appear to play a role in bone remodeling, particularly in its major complication, fracture, in premenopausal patients with SLE.
Collapse
Affiliation(s)
- A C Bonfá
- Rheumatology Division, Faculdade Medicina da Universidade de São Paulo, Av. Dr. Arnaldo, 455, 3 andar, Sala, 3105, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
30
|
Topical Treatment with Xiaozheng Zhitong Paste (XZP) Alleviates Bone Destruction and Bone Cancer Pain in a Rat Model of Prostate Cancer-Induced Bone Pain by Modulating the RANKL/RANK/OPG Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:215892. [PMID: 25691907 PMCID: PMC4322667 DOI: 10.1155/2015/215892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 12/19/2014] [Accepted: 12/20/2014] [Indexed: 12/21/2022]
Abstract
To explore the effects and mechanisms of Xiaozheng Zhitong Paste (XZP) on bone cancer pain, Wistar rats were inoculated with vehicle or prostate cancer PC-3 into the tibia bone and treated topically with inert paste, XZP at 15.75, 31.5, or 63 g/kg twice per day for 21 days. Their bone structural damage, nociceptive behaviors, bone osteoclast and osteoblast activity, and the levels of OPG, RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were examined. In comparison with that in the placebo group, significantly reduced numbers of invaded cancer cells, decreased levels of bone damage and mechanical threshold and paw withdrawal latency, lower levels of serum TRACP5b, ICTP, PINP, and BAP, and less levels of bone osteoblast and osteoclast activity were detected in the XZP-treated rats (P<0.05). Moreover, significantly increased levels of bone OPG but significantly decreased levels of RANL, RNAK, PTHrP, IGF-1, M-CSF, IL-8, and TNF-α were detected in the XZP-treated rats (P<0.05 for all). Together, XZP treatment significantly mitigated the cancer-induced bone damage and bone osteoclast and osteoblast activity and alleviated prostate cancer-induced bone pain by modulating the RANKL/RANK/OPG pathway and bone cancer-related inflammation in rats.
Collapse
|
31
|
Jiang Y, Zhang Y, Chen W, Liu C, Li X, Sun D, Liu Z, Xu Y, Mao X, Guo Q, Lin N. Achyranthes bidentata extract exerts osteoprotective effects on steroid-induced osteonecrosis of the femoral head in rats by regulating RANKL/RANK/OPG signaling. J Transl Med 2014; 12:334. [PMID: 25471933 PMCID: PMC4256888 DOI: 10.1186/s12967-014-0334-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/18/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Steroid-induced osteonecrosis of the femoral head (steroid-induced ONFH) presents great challenges due to the various effects of steroids on multi-system pathways involved into osteoblast differentiation, osteoblast and osteoclast apoptosis, lipid metabolism, calcium metabolism and coagulation. As one of the most frequently used herbs in Traditional Chinese Medicine formulas that are prescribed for the regulation of bone and mineral metabolism, the therapeutic effects of Achyranthes bidentata on steroid-induced ONFH remain unclear. Thus, the aim of the current study was to verify whether Achyranthes bidentata extract (ABE) can be used to prevent steroid-induced ONFH and to investigate its underlying pharmacological mechanisms. METHODS Steroid-induced ONFH rat models were established to evaluate the effects of ABE treatment on osteonecrotic changes and repair processes. Microfocal computed tomography (Micro-CT) was performed to assess the effects of ABE treatment on bone mass, microstructure, and vascularization. Then, the effects of ABE treatment on osteoclast differentiation and bone formation were also evaluated in vivo and in vitro. In addition, receptor activator of nuclear factor kappa B (RANK), RANK ligand (RANKL), and osteoprotegerin (OPG) expression in sera, femoral heads and bone marrow-derived mesenchymal stem cells (BMSCs) were detected at both protein and mRNA levels. RESULTS The ratio of empty lacuna, adipose tissue area, and adipocyte perimeter in the bone marrow were markedly lower in the ABE treatment groups than in the model group. Micro-CT evaluation indicated that ABE treatment could improve the microstructure of the trabecular bone, increase bone mineral density and promote vascularization in steroid-induced ONFH rats. Moreover, ABE treatment inhibited osteoclast differentiation and activated bone formation markers. Interestingly, OPG downregulation, RANK and RANKL upregulation, and an increased ratio of RANKL to OPG in sera and necrotic femoral head could be reversed by ABE treatment, which also effectively inhibited RANKL-induced osteoclast differentiation and regulated RANKL and OPG expression of in vitro. CONCLUSION ABE may prevent steroid-induced ONFH and alleviate steroid-induced bone deterioration by regulating the RANKL/RANK/OPG signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No, 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| |
Collapse
|
32
|
van der Goes MC, Jacobs JW, Bijlsma JW. The value of glucocorticoid co-therapy in different rheumatic diseases--positive and adverse effects. Arthritis Res Ther 2014; 16 Suppl 2:S2. [PMID: 25608693 PMCID: PMC4249491 DOI: 10.1186/ar4686] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glucocorticoids play a pivotal role in the management of many inflammatory rheumatic diseases. The therapeutic effects range from pain relief in arthritides, to disease-modifying effects in early rheumatoid arthritis, and to strong immunosuppressive actions in vasculitides and systemic lupus erythematosus. There are multiple indications that adverse effects are more frequent with the longer use of glucocorticoids and use of higher dosages, but high-quality data on the occurrence of adverse effects are scarce especially for dosages above 10 mg prednisone daily. The underlying rheumatic disease, disease activity, risk factors and individual responsiveness of the patient should guide treatment decisions. Monitoring for adverse effects should also be tailored to the patient. Continuously balancing the benefits and risks of glucocorticoid therapy is recommended. There is an ongoing quest for new drugs with glucocorticoid actions without the potential to cause harmful effects, such as selective glucocorticoid receptor agonists, but the application of a new compound in clinical practice will probably not occur within the next few years. In the meantime, basic research on glucocorticoid effects and detailed reports on therapeutic efficacy and occurrence of adverse effects will be valuable in weighing benefits and risks in clinical practice.
Collapse
|
33
|
Transglutaminase factor XIII promotes arthritis through mechanisms linked to inflammation and bone erosion. Blood 2014; 125:427-37. [PMID: 25336631 DOI: 10.1182/blood-2014-08-594754] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rheumatoid arthritis is a chronic inflammatory disease characterized by synovial hyperplasia, inflammatory cell infiltration, irreversible cartilage and bone destruction, and exuberant coagulation system activity within joint tissue. Here, we demonstrate that the coagulation transglutaminase, factor XIII (fXIII), drives arthritis pathogenesis by promoting local inflammatory and tissue degradative and remodeling events. All pathological features of collagen-induced arthritis (CIA) were significantly reduced in fXIII-deficient mice. However, the most striking difference in outcome was the preservation of cartilage and bone in fXIIIA(-/-) mice concurrent with reduced osteoclast numbers and activity. The local expression of osteoclast effectors receptor activator of nuclear factor-κB ligand (RANKL) and tartrate resistant acid phosphatase were significantly diminished in CIA-challenged and even unchallenged fXIIIA(-/-) mice relative to wild-type animals, but were similar in wild-type and fibrinogen-deficient mice. Impaired osteoclast formation in fXIIIA(-/-) mice was not due to an inherent deficiency of monocyte precursors, but it was linked to reduced RANKL-driven osteoclast formation. Furthermore, treatment of mice with the pan-transglutaminase inhibitor cystamine resulted in significantly diminished CIA pathology and local markers of osteoclastogenesis. Thus, eliminating fXIIIA limits inflammatory arthritis and protects from cartilage and bone destruction in part through mechanisms linked to reduced RANKL-mediated osteoclastogenesis. In summary, therapeutic strategies targeting fXIII activity may prove beneficial in limiting arthropathies and other degenerative bone diseases.
Collapse
|
34
|
Osteoprotegerin (OPG) and Matrix Gla protein (MGP) in rheumatoid arthritis patients: Relation to disease activity. THE EGYPTIAN RHEUMATOLOGIST 2014. [DOI: 10.1016/j.ejr.2014.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Bone remodelling markers in rheumatoid arthritis. Mediators Inflamm 2014; 2014:484280. [PMID: 24839355 PMCID: PMC4009257 DOI: 10.1155/2014/484280] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 01/01/2023] Open
Abstract
Bone loss in rheumatoid arthritis (RA) patients results from chronic inflammation and can lead to osteoporosis and fractures. A few bone remodeling markers have been studied in RA witnessing bone formation (osteocalcin), serum aminoterminal propeptide of type I collagen (PINP), serum carboxyterminal propeptide of type I collagen (ICTP), bone alkaline phosphatase (BAP), osteocalcin (OC), and bone resorption: C-terminal telopeptide of type 1 collagen (I-CTX), N-terminal telopeptide of type 1 collagen (I-NTX), pyridinolines (DPD and PYD), and tartrate-resistant acid phosphatase (TRAP). Bone resorption can be seen either in periarticular bone (demineralization and erosion) or in the total skeleton (osteoporosis). Whatever the location, bone resorption results from activation of osteoclasts when the ratio between osteoprotegerin and receptor activator of nuclear factor kappa-B ligand (OPG/RANKL) is decreased under influence of various proinflammatory cytokines. Bone remodeling markers also allow physicians to evaluate the effect of drugs used in RA like biologic agents, which reduce inflammation and exert a protecting effect on bone. We will discuss in this review changes in bone markers remodeling in patients with RA treated with biologics.
Collapse
|
36
|
van der Goes MC, Jacobs JWG, Jurgens MS, Bakker MF, van der Veen MJ, van der Werf JH, Welsing PMJ, Bijlsma JWJ. Are changes in bone mineral density different between groups of early rheumatoid arthritis patients treated according to a tight control strategy with or without prednisone if osteoporosis prophylaxis is applied? Osteoporos Int 2013; 24:1429-36. [PMID: 23011680 PMCID: PMC3604583 DOI: 10.1007/s00198-012-2073-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/25/2012] [Indexed: 01/30/2023]
Abstract
UNLABELLED Addition of 10 mg prednisone daily to a methotrexate-based tight control strategy does not lead to bone loss in early rheumatoid arthritis (RA) patients receiving preventive treatment for osteoporosis. A small increase in lumbar bone mineral density (BMD) during the first year of treatment was recorded, regardless of use of glucocorticoids. INTRODUCTION This study aims to describe effects on BMD of treatment according to EULAR guidelines with a methotrexate-based tight control strategy including 10 mg prednisone daily versus the same strategy without prednisone in early RA patients who received preventive therapy for osteoporosis. METHODS Early RA patients were included in the CAMERA-II trial: a randomized, placebo-controlled, double-blind 2-year trial, in which effects of addition of 10 mg prednisone daily to a methotrexate-based tight control strategy were studied. All patients received calcium, vitamin D and bisphosphonates. Disease activity was assessed every 4 weeks. Radiographs of hands and feet and dual-energy X-ray absorptiometry of lumbar spine and left hip were performed at baseline and after 1 and 2 years of treatment. RESULTS BMD increased significantly over time in both treatment groups at the lumbar spine with a mean of 2.6% during the first year (p<0.001), but not at the hip; at none of the time points did BMD differ significantly between the prednisone and placebo group. Higher age and lower weight at baseline and higher disease activity scores during the trial, but not glucocorticoid therapy, were associated with lower BMD at both the lumbar spine and the hip in mixed-model analyses. CONCLUSION Addition of 10 mg prednisone daily to a methotrexate-based tight control strategy does not lead to bone loss in early RA patients on bisphosphonates. A small increase in lumbar BMD during the first year of treatment was found, regardless of use of glucocorticoids.
Collapse
Affiliation(s)
- M C van der Goes
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, PO Box 85500, 3508, GA, Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Naidu V, Dinesh Babu KR, Thwin MM, Satish R, Kumar PV, Gopalakrishnakone P. RANKL targeted peptides inhibit osteoclastogenesis and attenuate adjuvant induced arthritis by inhibiting NF-κB activation and down regulating inflammatory cytokines. Chem Biol Interact 2013; 203:467-79. [DOI: 10.1016/j.cbi.2012.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 01/11/2023]
|
38
|
Triptolide Prevents Bone Destruction in the Collagen-Induced Arthritis Model of Rheumatoid Arthritis by Targeting RANKL/RANK/OPG Signal Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:626038. [PMID: 23573139 PMCID: PMC3610373 DOI: 10.1155/2013/626038] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/18/2013] [Indexed: 01/03/2023]
Abstract
Focal bone destruction within inflamed joints is the most specific hallmark of rheumatoid arthritis (RA). Our previous study indicated that the therapeutic efficiency of triptolide in RA may be due partially to its chondroprotective and anti-inflammatory effects. However, its roles in bone destruction are still unclear. In this study, our data firstly showed the therapeutic effects of triptolide on severity of arthritis and arthritis progression in collagen-induced arthritis (CIA) mice. Then, by micro-CT quantification, triptolide treatment significantly increased bone mineral density, bone volume fraction, and trabecular thickness and decreased trabecular separation of inflamed joints. Interestingly, triptolide treatment could prevent the bone destruction by reducing the number of osteoclasts in inflamed joints, reducing the expression of receptor activator of NF-κB (RANK) ligand (RANKL) and RANK, increasing the expression of osteoprotegerin (OPG), at both mRNA and protein levels, and decreasing the ratio of RANKL to OPG in sera and inflamed joints of CIA mice, which were further confirmed in the coculture system of human fibroblast-like synovial and peripheral blood mononuclear cells. These findings offer the convincing evidence for the first time that triptolide may attenuate RA partially by preventing the bone destruction and inhibit osteoclast formation by regulating RANKL/RANK/OPG signal pathway.
Collapse
|
39
|
Maeno M, Tanaka H, Zhang F, Kitami S, Nakai K, Kawato T. Direct and Indirect Effects of IL-17A on RANKL-Induced Osteoclastogenesis. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
40
|
Zwolak R, Majdan M, Skórski M, Chrapko B. Efficacy of radiosynoviorthesis and its impact on chosen inflammatory markers. Rheumatol Int 2012; 32:2339-44. [PMID: 21638103 PMCID: PMC3402676 DOI: 10.1007/s00296-011-1956-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/08/2011] [Indexed: 10/29/2022]
Abstract
Radiosynoviorthesis is used for the local treatment of recurrent joint effusions and leads to synovium necrosis after radionuclide administration. This procedure provides opportunity to full recovery of normal synovium function after local corticosteroids and systemic modifying drugs failure.
Collapse
Affiliation(s)
- Robert Zwolak
- Department of Rheumatology and Connective Tissue Diseases, Medical University, Lublin, Poland.
| | | | | | | |
Collapse
|
41
|
Up-regulation of the inflammatory response by ovariectomy in collagen-induced arthritis. effects of tin protoporphyrin IX. Inflammation 2012; 34:585-96. [PMID: 21046213 DOI: 10.1007/s10753-010-9266-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
We have studied the influence of ovariectomy on the inflammatory response and bone metabolism on CIA as a model of postmenopausal arthritis as well as the effects of tin protoporphyrin IX (SnPP), a heme oxygenase inhibitor. Ovariectomy in non-arthritic mice produced increased serum PGD2 levels and up-regulated the expression of COX-2, h-PGDS, l-PGDS, and HO-1 in the joints. In CIA, ovariectomy potentiated the inflammatory response with higher levels of serum IL-6 and MMP-3, local PGD2 and MMP-3 as well as trabecular bone erosion. In OVX-CIA, SnPP decreased the serum levels of IL-6, MMP-3, and PGD2; down-regulated TNFα, COX-2, hPGDS, PGD2, PGE2, and MMP-3 in joint tissues; and also decreased focal bone loss in the inflamed joint. Ovariectomy up-regulates inflammatory mediators in non-arthritic and in arthritic animals. In the OVX-CIA model, SnPP exerts anti-inflammatory effects which are not associated with the prevention of systemic bone loss.
Collapse
|
42
|
Centrella M, McCarthy TL. Estrogen receptor dependent gene expression by osteoblasts - direct, indirect, circumspect, and speculative effects. Steroids 2012; 77:174-84. [PMID: 22093482 DOI: 10.1016/j.steroids.2011.10.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/31/2011] [Indexed: 12/15/2022]
Abstract
Hormone activated estrogen receptors (ERs) have long been appreciated as potent mediators of gene expression in female reproductive tissues. These highly targeted responses likely evolved from more elemental roles in lower organisms, in agreement with their widespread effects in the cardiovascular, immunological, central nervous, and skeletal tissue systems. Still, despite intense investigation, the multiple and often perplexing roles of ERs retain significant attention. In the skeleton, this in part derives from apparently opposing effects by ER agonists on bone growth versus bone remodeling, and in younger versus older individuals. The complexity associated with ER activation can also derive from their interactions with other hormone and growth factor systems, and their direct and indirect effects on gene expression. We propose that part of this complexity results from essential interactions between ERs and other transcription factors, each with their own biochemical and molecular intricacies. Solving some of the many questions that persist may help to achieve better, or better directed, use of agents that can drive ER activation in focused and possibly tissue restricted ways.
Collapse
Affiliation(s)
- Michael Centrella
- Department of Surgery, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06520-8041, United States.
| | | |
Collapse
|
43
|
Alkady EA, Rashad SM, Khedr TM, Mosad E, Abdel-Wahab N. Early predictors of increased bone resorption in juvenile idiopathic arthritis: OPG/RANKL ratio, as a key regulator of bone metabolism. EGYPTIAN RHEUMATOLOGIST 2011. [DOI: 10.1016/j.ejr.2011.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
44
|
Honda K. Interleukin-6 and soluble interleukin-6 receptor suppress osteoclastic differentiation by inducing PGE(2) production in chondrocytes. J Oral Sci 2011; 53:87-96. [PMID: 21467819 DOI: 10.2334/josnusd.53.87] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
This study examined how interleukin-6 (IL-6) and soluble IL-6 receptor (sIL-6r) influence osteoclastic differentiation through the function of chondrocytes. Chondrocytes were cultured with or without IL-6 and/or sIL-6r in the presence or absence of NS398, a specific inhibitor of cyclooxygenase (COX)-2, for up to 28 days. Chondrocytes were also cultured with or without IL-6 and sIL-6r for 28 days, and the conditioned medium from cells cultured without IL-6 and sIL-6r was used to induce differentiation of RAW264.7 cells into osteoclast precursors. Osteoclastic differentiation was assessed by tartrate-resistant acid phosphatase (TRAP) staining. Expression of osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), COX-2, and prostaglandin E(2) (PGE(2)) increased in cells exposed to IL-6 and sIL-6r, whereas expression of macrophage colony-stimulating factor (M-CSF) and bone resorption-related enzymes decreased. NS398 blocked the stimulatory/suppressive effects of IL-6 and sIL-6r on the expression of OPG, RANKL, and M-CSF. Fewer TRAP-positive multinucleated cells were detected after treatment with conditioned medium from IL-6- and sIL-6r-treated chondrocytes than after treatment with conditioned medium from untreated chondrocytes. These results suggest that IL-6 and sIL-6r interfere with osteoclast function through the involvement of chondrocytes. Specifically, they appear to suppress the differentiation of osteoclast precursors into osteoclasts by inducing chondrocytic PGE(2) production, which, in turn, increases OPG secretion and decreases M-CSF secretion by chondrocytes.
Collapse
Affiliation(s)
- Kazuhiro Honda
- Nihon University Graduate School of Dentistry, Tokyo, Japan.
| |
Collapse
|
45
|
Maicas N, Ferrándiz ML, Brines R, Ibáñez L, Cuadrado A, Koenders MI, van den Berg WB, Alcaraz MJ. Deficiency of Nrf2 accelerates the effector phase of arthritis and aggravates joint disease. Antioxid Redox Signal 2011; 15:889-901. [PMID: 21406003 DOI: 10.1089/ars.2010.3835] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AIMS Although oxidative stress participates in the etiopathogenesis of rheumatoid arthritis, its importance in this inflammatory disease has not been fully elucidated. In this study, we analyzed the relevance of the transcription factor Nrf2, master regulator of redox homeostasis, in the effector phase of an animal model of rheumatoid arthritis, using the transfer of serum from K/BxN transgenic mice to Nrf2(-/-) mice. RESULTS Nrf2 deficiency accelerated the incidence of arthritis, and animals showed a widespread disease affecting both front and hind paws. Therefore, the inflammatory response was enhanced, with increased migration of leukocytes and joint destruction in front paws. We observed an increased production of tumor necrosis factor-α, interleukin-6, and CXCL-1 in the joint, with small changes in eicosanoid levels. Serum levels of CXCL-1 and receptor activator for nuclear factor κB ligand were enhanced and osteocalcin decreased in arthritic Nrf2(-/-) mice. The expression of cyclooxygenase-2, inducible nitric oxide synthase, and peroxynitrite in the joints was higher in Nrf2 deficiency, whereas heme oxygenase-1 was downregulated. INNOVATION Nrf2 may be a therapeutic target for arthritis. CONCLUSION Our results support a protective role of Nrf2 against joint inflammation and degeneration in arthritis.
Collapse
Affiliation(s)
- Nuria Maicas
- Department of Pharmacology, University of Valencia, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chiang TI, Chang IC, Lee HS, Lee H, Huang CH, Cheng YW. Osteopontin regulates anabolic effect in human menopausal osteoporosis with intermittent parathyroid hormone treatment. Osteoporos Int 2011; 22:577-85. [PMID: 20734029 DOI: 10.1007/s00198-010-1327-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/14/2010] [Indexed: 01/16/2023]
Abstract
UNLABELLED In this pilot study, we demonstrated that women with osteopontin (OPN) over-expression show less resistance to postmenopausal osteoporosis than women with normal OPN levels. We hypothesized that the levels of plasma OPN could be used as a treatment indicator for intermittent parathyroid hormone (PTH)-treated menopausal osteoporosis. We demonstrated that plasma OPN levels could be used as a biomarker for early treatment response. INTRODUCTION Animal studies indicate that OPN-deficient mice are resistant to ovariectomy induced osteoporosis. Our pilot study also demonstrated women with OPN over expression may show less resistance to postmenopausal osteoporosis. The role of plasma OPN in PTH1-34-treated osteoporosis remains unclear. METHODS From September 2005 to September 2006, 31 menopausal women over 45 years of age with severe osteoporosis were enrolled in our study. Subjects were treated with PTH1-34 subcutaneously at a dose of 20 μg/day. Plasma OPN levels and BMD of the lumbar spine and hip were measured using ELISA and dual-energy X-ray absorptiometry at baseline, 3, 6, and 9 months. Response to the treatment was assessed by the sequential change in bone mineral density and OPN expression using a general linear mixed model. RESULTS The plasma OPN decreased sequentially and significantly throughout the 9-month treatment course from 20.75 ± 5.36 to 11.2 ± 4.37 ng/ml (p < 0.001). The sequential improvement in the T-score and Z-score was significant in the lumbar spine but not in the hip area. In the lumbar spine, when the plasma OPN decreased by 1 ng/ml the T-score increased by 0.0406 and the Z-score increased by 0.0572 of lumbar spine. CONCLUSION OPN levels are related to the anabolic effect of PTH in human postmenopausal osteoporosis. Plasma OPN levels could be used as a biomarker for early treatment response.
Collapse
Affiliation(s)
- T-I Chiang
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo, N. Rd, Taichung, 40201, Taiwan
| | | | | | | | | | | |
Collapse
|
47
|
Zhang F, Tanaka H, Kawato T, Kitami S, Nakai K, Motohashi M, Suzuki N, Wang CL, Ochiai K, Isokawa K. Interleukin-17A induces cathepsin K and MMP-9 expression in osteoclasts via celecoxib-blocked prostaglandin E2 in osteoblasts. Biochimie 2011; 93:296-305. [DOI: 10.1016/j.biochi.2010.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 10/01/2010] [Indexed: 11/26/2022]
|
48
|
Zhang F, Wang CL, Koyama Y, Mitsui N, Shionome C, Sanuki R, Suzuki N, Mayahara K, Shimizu N, Maeno M. Compressive force stimulates the gene expression of IL-17s and their receptors in MC3T3-E1 cells. Connect Tissue Res 2010; 51:359-69. [PMID: 20497006 DOI: 10.3109/03008200903456942] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During orthodontic tooth movement, cytokines released from periodontal ligament fibroblasts and alveolar bone osteoblasts can alter the process of bone remodeling. Recently, interleukin-17 (IL-17) was found to stimulate osteoclastic resorption through osteoblasts by inducing receptor activator of nuclear factor κB ligand (RANKL) expression. However, the relationship between mechanical stress and IL-17 production by osteoblasts is not clear. Therefore, we examined the effect of compressive force on the expressions of IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, IL-17F, and their receptors (IL-17RA, IL-17RB, IL-17RC, IL-17RD, and IL-17RE) using MC3T3-E1 cells as osteoblast-like cells. We also examined the effect of IL-17A on the expression of IL-17Rs, RANKL, macrophage colony-stimulating factor (M-CSF), and osteoprotegerin (OPG). The cells were cultured with or without continuous compressive force (1.0 and 2.0 g/cm(2)) for up to 24 hr. The cells were also cultured with or without IL-17A (0.1, 1.0, or 10 ng/ml) for up to 72 hr. The mRNA expressions of IL-17s and their receptors were estimated by real-time polymerase chain reaction. The expression levels of IL-17s and their receptors increased depending on the compressive force. The addition of IL-17A increased the expression of IL-17RA, IL-17RB, IL-17RC, IL-17RE, RANKL, and M-CSF, whereas it decreased OPG expression. These results indicate that compressive force induces the expression of IL-17s and their receptors in osteoblast-like cells and that IL-17s and their receptors produced in response to compressive force may affect osteoclastogenesis through the expression of RANKL, M-CSF, and OPG.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Orthodontics, Shandong University School of Dentistry, Jinan, Shandong Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jabbar S, Drury J, Fordham J, Datta HK, Francis RM, Tuck SP. Plasma vitamin D and cytokines in periodontal disease and postmenopausal osteoporosis. J Periodontal Res 2010; 46:97-104. [DOI: 10.1111/j.1600-0765.2010.01317.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Zhang F, Koyama Y, Sanuki R, Mitsui N, Suzuki N, Kimura A, Nakajima A, Shimizu N, Maeno M. IL-17A stimulates the expression of inflammatory cytokines via celecoxib-blocked prostaglandin in MC3T3-E1 cells. Arch Oral Biol 2010; 55:679-88. [PMID: 20630498 DOI: 10.1016/j.archoralbio.2010.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/28/2010] [Accepted: 06/13/2010] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The prostaglandins (PGs) released from osteoblasts can alter the process of bone remodelling. Recently, we showed that compressive force induced the expression of pro-inflammatory cytokine interleukin (IL)-17s and their receptors in osteoblastic MC3T3-E1 cells and that IL-17A was expressed most highly. Consequently, in the current study we examined the effect of IL-17A and/or celecoxib on PGE(2) production and the expression of cyclooxygenases (COXs) and inflammatory cytokines in MC3T3-E1 cells. We also examined the effects of PGE(2) and cyclohexamide on the expression of inflammatory cytokines. METHODS Cells were cultured with or without IL-17A (0.1, 1.0, or 10 ng/ml) in the presence or absence of 10 microM celecoxib, a specific inhibitor of COX-2, for up to 72 h. Cells were pretreated with or without 10 microg/ml cycloheximide, protein synthesis inhibitor, for 30 min, and then cultured with 10 ng/ml IL-17A for 24 h. Cells were also cultured with or without 1.5 ng/ml PGE(2) for 24 h. PGE(2) production was determined by ELISA. The expression of COX-1, COX-2, IL-1alpha, IL-6, IL-8, IL-11, and TNF-alpha mRNAs and proteins was determined by real-time PCR and ELISA, respectively. RESULTS The expression of COX-2, IL-1alpha, IL-6, IL-8, IL-11, and TNF-alpha, as well as PGE(2) production increased in the presence of IL-17A, whereas COX-1 expression did not change. Celecoxib blocked the stimulatory effect of IL-17A on the expression of COX-2, IL-1alpha, IL-6, IL-8, and IL-11 as well as PGE(2) production, whereas it did not block TNF-alpha expression. Cycloheximide pretreatment suppressed the expression of IL-17-induced inflammatory cytokines. The expression of IL-1alpha, IL-6, IL-8, and IL-11 increased by the addition of PGE(2), whereas TNF-alpha expression was not affected. CONCLUSION These results suggest that IL-17A stimulates the expression of bone resorption-related inflammatory cytokines through an autocrine mechanism involving celecoxib-blocked PGs, mainly PGE(2), in osteoblasts.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Orthodontics, Shandong University School of Dentistry, Jinan, Shandong Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|