1
|
Pirri F, Burke FF, McCormick CM. A protocol for investigating long-term social discrimination memory: Evidence in female and male Long Evans rats. PLoS One 2024; 19:e0311920. [PMID: 39570824 PMCID: PMC11581213 DOI: 10.1371/journal.pone.0311920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 11/24/2024] Open
Abstract
Social discrimination, the investigation of a novel peer more so than a familiar peer, is used as a measure of social memory. There is much less research on long-term social memory than short-term social memory, and no long-term social memory research in female rats. The majority of long-term social discrimination research has relied on long familiarization session of an hour or more and involved juveniles as the stimulus peers. Here we show that a 30-minute familiarization session is sufficient to produce social discrimination 24 h later in both male and female rats and allows for measurement of social approach. Other methodological considerations are described, such as: that age- and sex-matched stimulus peers can be used across a wider range of ages than the use of juveniles; evidence that a familiar peer in a novel location attenuates social discrimination; that the first 10 minutes of the social approach reliably shows a preference for the social peer over an object whereas the 30-minute session does not; and that 10-minute discrimination sessions are preferable to 5-minute sessions. The research satisfies the goal of obtaining an efficient procedure to investigate both the possibility of enhancing or diminishing social approach and social memory with experimental manipulations in both sexes.
Collapse
Affiliation(s)
- Fardad Pirri
- Department of Biological Sciences, Brock University, St. Catharines, Canada
| | | | - Cheryl M. McCormick
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Department of Psychology, Brock University, St. Catharines, Canada
| |
Collapse
|
2
|
Mendelski GQ, Furini CRG, Stefani GP, Botton LP, Baptista RR. Enhancing long-term memory through strength training: An experimental study in adult and middle-aged rats. Behav Brain Res 2024; 456:114697. [PMID: 37793439 DOI: 10.1016/j.bbr.2023.114697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/09/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The study aimed to explore the impact of strength training on long-term memory in adult and middle-aged rodents, specifically male Wistar rats aged 9 and 20 months. These rats were divided into two groups: one sedentary (SED) and the other trained (ST) for a period of 12 weeks. The strength training involved squatting exercises using adapted equipment, while the sedentary group maintained their regular, non-exercised routine. Behavioral tasks assessing mobility, anxiety, and multiple facets of memory, such as object recognition memory (ORM), social recognition memory (SRM), and object location memory (OLM), were conducted post-training. The findings were promising, revealing a generally beneficial impact of strength training on memory tasks across both age groups. Specifically, the ORM tasks showed facilitated and improved learning in both adult and middle-aged rats that underwent training. In contrast, OLM displayed only a facilitatory effect in both age groups, meaning that while the trained rats learned the task, they did not outperform the sedentary group. For SRM, a facilitatory effect was observed only in the adult group. In addition to the cognitive benefits, strength training was found to have an anxiolytic effect in the 9-month-old rats and positively affected body mass and adipose tissue composition. Notably, the study correlated the strength gains from the training with improved performance in memory tasks. These outcomes provide crucial insights into the potential of exercise-based interventions to bolster cognitive health and mitigate age-related cognitive decline.
Collapse
Affiliation(s)
- Gabriela Quines Mendelski
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Cristiane Regina Guerino Furini
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Brazil; Laboratory of Cognition and Neurobiology of Memory, Brain Institute, Pontifical Catholic University of Rio Grande do Sul, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | | | | | - Rafael Reimann Baptista
- Graduate Program in Biomedical Gerontology, School of Medicine, Pontifical Catholic University of Rio Grande do Sul, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Brazil; School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Petrasek T, Vojtechova I, Klovrza O, Tuckova K, Vejmola C, Rak J, Sulakova A, Kaping D, Bernhardt N, de Vries PJ, Otahal J, Waltereit R. mTOR inhibitor improves autistic-like behaviors related to Tsc2 haploinsufficiency but not following developmental status epilepticus. J Neurodev Disord 2021; 13:14. [PMID: 33863288 PMCID: PMC8052752 DOI: 10.1186/s11689-021-09357-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Background Tuberous sclerosis complex (TSC), a multi-system genetic disorder often associated with autism spectrum disorder (ASD), is caused by mutations of TSC1 or TSC2, which lead to constitutive overactivation of mammalian target of rapamycin (mTOR). In several Tsc1+/- and Tsc2+/- animal models, cognitive and social behavior deficits were reversed by mTOR inhibitors. However, phase II studies have not shown amelioration of ASD and cognitive deficits in individuals with TSC during mTOR inhibitor therapy. We asked here if developmental epilepsy, common in the majority of individuals with TSC but absent in most animal models, could explain the discrepancy. Methods At postnatal day P12, developmental status epilepticus (DSE) was induced in male Tsc2+/- (Eker) and wild-type rats, establishing four experimental groups including controls. In adult animals (n = 36), the behavior was assessed in the paradigms of social interaction test, elevated plus-maze, light-dark test, Y-maze, and novel object recognition. The testing was carried out before medication (T1), during a 2-week treatment with the mTOR inhibitor everolimus (T2) and after an 8-week washing-out (T3). Electroencephalographic (EEG) activity was recorded in a separate set of animals (n = 18). Results Both Tsc2+/- mutation and DSE caused social behavior deficits and epileptiform EEG abnormalities (T1). Everolimus led to a persistent improvement of the social deficit induced by Tsc2+/-, while deficits related to DSE did not respond to everolimus (T2, T3). Conclusions These findings may contribute to an explanation why ASD symptoms in individuals with TSC, where comorbid early-onset epilepsy is common, were not reliably ameliorated by mTOR inhibitors in clinical studies. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-021-09357-2.
Collapse
Affiliation(s)
- Tomas Petrasek
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.
| | - Iveta Vojtechova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Klovrza
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Klara Tuckova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Cestmir Vejmola
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Jakub Rak
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Anna Sulakova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Daniel Kaping
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Nadine Bernhardt
- Department of Psychiatry, University Hospital and Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany
| | - Petrus J de Vries
- Division of Child & Adolescent Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Jakub Otahal
- Department of Developmental Epileptology, Institute of Physiology CAS, Prague, Czech Republic
| | - Robert Waltereit
- Department of Child and Adolescent Psychiatry, University Hospital and Medical Faculty Carl Gustav Carus, Technical University of Dresden, Dresden, Germany. .,Department of Child and Adolescent Psychiatry, University Medical Center Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany.
| |
Collapse
|
4
|
Lunardi P, Mansk LMZ, Jaimes LF, Pereira GS. On the novel mechanisms for social memory and the emerging role of neurogenesis. Brain Res Bull 2021; 171:56-66. [PMID: 33753208 DOI: 10.1016/j.brainresbull.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 01/25/2023]
Abstract
Social memory (SM) is a key element in social cognition and it encompasses the neural representation of conspecifics, an essential information to guide behavior in a social context. Here we evaluate classical and cutting-edge studies on neurobiology of SM, using as a guiding principle behavioral tasks performed in adult rodents. Our review highlights the relevance of the hippocampus, especially the CA2 region, as a neural substrate for SM and suggest that neural ensembles in the olfactory bulb may also encode SM traces. Compared to other hippocampus-dependent memories, much remains to be done to describe the neurobiological foundations of SM. Nonetheless, we argue that special attention should be paid to neurogenesis. Finally, we pinpoint the remaining open question on whether the hippocampal adult neurogenesis acts through pattern separation to permit the discrimination of highly similar stimuli during behavior.
Collapse
Affiliation(s)
- Paula Lunardi
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lara M Z Mansk
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
5
|
Kiyokawa Y, Li Y, Takeuchi Y. A dyad shows mutual changes during social buffering of conditioned fear responses in male rats. Behav Brain Res 2019; 366:45-55. [PMID: 30880219 DOI: 10.1016/j.bbr.2019.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/30/2022]
Abstract
The presence of an affiliative conspecific reduces stress responses to a wide variety of stimuli. This phenomenon is termed "social buffering". We previously found that the presence of another naïve rat (associate) reduced conditioned fear responses to an auditory conditioned stimulus in a conditioned subject rat. Although we subsequently conducted a series of studies to examine behavioral, physiological, and neural changes during social buffering in the conditioned subject, the changes in the associate remained unclear. Therefore, in the present study, we investigated the behavioral and neural changes in the associate. Fear-conditioned and non-conditioned rats were re-exposed to the conditioned stimulus with an associate placed in the same enclosure (Experiment 1) or separated by a wire-mesh partition (Experiment 2). In Experiment 1, the associate exhibited increased anogenital contact and allo-grooming, which were accompanied by increased c-Fos expression in the paraventricular nucleus of the hypothalamus and central amygdala. These results suggest that the subject and associate mutually affected each other during social buffering. In contrast, in Experiment 2, we found only a difference in the time course of investigation between associates tested with the conditioned and non-conditioned subjects. These results suggest that the associate was unable to acquire a sufficient amount of signal from the conditioned subject behind the wire-mesh partition necessary to show clear changes in behavior and c-Fos expression. Taken together, the current findings suggest that a dyad shows mutual changes during social buffering of conditioned fear responses in male rats.
Collapse
Affiliation(s)
- Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yasong Li
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
6
|
Petrasek T, Vojtechova I, Lobellova V, Popelikova A, Janikova M, Brozka H, Houdek P, Sladek M, Sumova A, Kristofikova Z, Vales K, Stuchlík A. The McGill Transgenic Rat Model of Alzheimer's Disease Displays Cognitive and Motor Impairments, Changes in Anxiety and Social Behavior, and Altered Circadian Activity. Front Aging Neurosci 2018; 10:250. [PMID: 30210330 PMCID: PMC6121039 DOI: 10.3389/fnagi.2018.00250] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
The McGill-R-Thy1-APP transgenic rat is an animal model of the familial form of Alzheimer's disease (AD). This model mirrors several neuropathological hallmarks of the disease, including the accumulation of beta-amyloid and the formation of amyloid plaques (in homozygous animals only), neuroinflammation and the gradual deterioration of cognitive functions even prior to plaque formation, although it lacks the tauopathy observed in human victims of AD. The goal of the present study was a thorough characterization of the homozygous model with emphasis on its face validity in several domains of behavior known to be affected in AD patients, including cognitive functions, motor coordination, emotionality, sociability, and circadian activity patterns. On the behavioral level, we found normal locomotor activity in spontaneous exploration, but problems with balance and gait coordination, increased anxiety and severely impaired spatial cognition in 4–7 month old homozygous animals. The profile of social behavior and ultrasonic communication was altered in the McGill rats, without a general social withdrawal. McGill rats also exhibited changes in circadian profile, with a shorter free-running period and increased total activity during the subjective night, without signs of sleep disturbances during the inactive phase. Expression of circadian clock gene Bmal1 was found to be increased in the parietal cortex and cerebellum, while Nr1d1 expression was not changed. The clock-controlled gene Prok2 expression was found to be elevated in the parietal cortex and hippocampus, which might have contributed to the observed changes in circadian phenotype. We conclude that the phenotype in the McGill rat model is not restricted to the cognitive domain, but also includes gait problems, changes in emotionality, social behavior, and circadian profiles. Our findings show that the model should be useful for the development of new therapeutic approaches targeting not only memory decline but also other symptoms decreasing the quality of life of AD patients.
Collapse
Affiliation(s)
- Tomas Petrasek
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,National Institute of Mental Health, Klecany, Czechia
| | - Iveta Vojtechova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,National Institute of Mental Health, Klecany, Czechia.,First Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Veronika Lobellova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Popelikova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martina Janikova
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Hana Brozka
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Pavel Houdek
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Sladek
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Alena Sumova
- Department of Neurohumoral Regulations, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | | | - Karel Vales
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,National Institute of Mental Health, Klecany, Czechia
| | - Ales Stuchlík
- Department of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
7
|
Toyoshima M, Yamada K, Sugita M, Ichitani Y. Social enrichment improves social recognition memory in male rats. Anim Cogn 2018; 21:345-351. [DOI: 10.1007/s10071-018-1171-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
|
8
|
Affiliation(s)
- Natália Madeira
- ISPA—Instituto Universitário, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Rui F. Oliveira
- ISPA—Instituto Universitário, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Champalimaud Neuroscience Program, Lisboa, Portugal
| |
Collapse
|
9
|
Chakraborty N, Meyerhoff J, Jett M, Hammamieh R. Genome to Phenome: A Systems Biology Approach to PTSD Using an Animal Model. Methods Mol Biol 2017; 1598:117-154. [PMID: 28508360 DOI: 10.1007/978-1-4939-6952-4_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating illness that imposes significant emotional and financial burdens on military families. The understanding of PTSD etiology remains elusive; nonetheless, it is clear that PTSD is manifested by a cluster of symptoms including hyperarousal, reexperiencing of traumatic events, and avoidance of trauma reminders. With these characteristics in mind, several rodent models have been developed eliciting PTSD-like features. Animal models with social dimensions are of particular interest, since the social context plays a major role in the development and manifestation of PTSD.For civilians, a core trauma that elicits PTSD might be characterized by a singular life-threatening event such as a car accident. In contrast, among war veterans, PTSD might be triggered by repeated threats and a cumulative psychological burden that coalesced in the combat zone. In capturing this fundamental difference, the aggressor-exposed social stress (Agg-E SS) model imposes highly threatening conspecific trauma on naïve mice repeatedly and randomly.There is abundant evidence that suggests the potential role of genetic contributions to risk factors for PTSD. Specific observations include putatively heritable attributes of the disorder, the cited cases of atypical brain morphology, and the observed neuroendocrine shifts away from normative. Taken together, these features underscore the importance of multi-omics investigations to develop a comprehensive picture. More daunting will be the task of downstream analysis with integration of these heterogeneous genotypic and phenotypic data types to deliver putative clinical biomarkers. Researchers are advocating for a systems biology approach, which has demonstrated an increasingly robust potential for integrating multidisciplinary data. By applying a systems biology approach here, we have connected the tissue-specific molecular perturbations to the behaviors displayed by mice subjected to Agg-E SS. A molecular pattern that links the atypical fear plasticity to energy deficiency was thereby identified to be causally associated with many behavioral shifts and transformations.PTSD is a multifactorial illness sensitive to environmental influence. Accordingly, it is essential to employ the optimal animal model approximating the environmental condition that elicits PTSD-like symptoms. Integration of an optimal animal model with a systems biology approach can contribute to a more knowledge-driven and efficient next-generation care management system and, potentially, prevention of PTSD.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Integrative Systems Biology, Geneva Foundation, USACEHR, 568 Doughten Drive, Fredrick, MD, 21702-5010, USA
| | - James Meyerhoff
- Integrative Systems Biology, Geneva Foundation, USACEHR, 568 Doughten Drive, Fredrick, MD, 21702-5010, USA
| | - Marti Jett
- Integrative Systems Biology, US Army Center for Environmental Health Research, USACEHR, 568 Doughten Drive, Frederick, MD, 21702-5010, USA
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Center for Environmental Health Research, USACEHR, 568 Doughten Drive, Frederick, MD, 21702-5010, USA.
| |
Collapse
|
10
|
Garrido Zinn C, Clairis N, Silva Cavalcante LE, Furini CRG, de Carvalho Myskiw J, Izquierdo I. Major neurotransmitter systems in dorsal hippocampus and basolateral amygdala control social recognition memory. Proc Natl Acad Sci U S A 2016; 113:E4914-9. [PMID: 27482097 PMCID: PMC4995962 DOI: 10.1073/pnas.1609883113] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Social recognition memory (SRM) is crucial for reproduction, forming social groups, and species survival. Despite its importance, SRM is still relatively little studied. Here we examine the participation of the CA1 region of the dorsal hippocampus (CA1) and the basolateral amygdala (BLA) and that of dopaminergic, noradrenergic, and histaminergic systems in both structures in the consolidation of SRM. Male Wistar rats received intra-CA1 or intra-BLA infusions of different drugs immediately after the sample phase of a social discrimination task and 24-h later were subjected to a 5-min retention test. Animals treated with the protein synthesis inhibitor, anisomycin, into either the CA1 or BLA were unable to recognize the previously exposed juvenile (familiar) during the retention test. When infused into the CA1, the β-adrenoreceptor agonist, isoproterenol, the D1/D5 dopaminergic receptor antagonist, SCH23390, and the H2 histaminergic receptor antagonist, ranitidine, also hindered the recognition of the familiar juvenile 24-h later. The latter drug effects were more intense in the CA1 than in the BLA. When infused into the BLA, the β-adrenoreceptor antagonist, timolol, the D1/D5 dopamine receptor agonist, SKF38393, and the H2 histaminergic receptor agonist, ranitidine, also hindered recognition of the familiar juvenile 24-h later. In all cases, the impairment to recognize the familiar juvenile was abolished by the coinfusion of agonist plus antagonist. Clearly, both the CA1 and BLA, probably in that order, play major roles in the consolidation of SRM, but these roles are different in each structure vis-à-vis the involvement of the β-noradrenergic, D1/D5-dopaminergic, and H2-histaminergic receptors therein.
Collapse
Affiliation(s)
- Carolina Garrido Zinn
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Nicolas Clairis
- Département de Biologie, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Lorena Evelyn Silva Cavalcante
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil;
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, 90610-000 Porto Alegre, RS, Brazil;
| |
Collapse
|
11
|
Abstract
We provide in this chapter a brief overview of the present knowledge about social memory in laboratory rodents with a focus on mice and rats. We discuss in the first part the relevance of the processing of olfactory cues for social recognition in these animals and present information about the brain areas involved in the generation of a long-term social memory including cellular mechanisms thought to underlie memory consolidation. In the second part, we suggest that sensory modalities beyond olfaction may also be important in contributing to the long-term social memory trace including audition and taction (and vision). The exposure to stimuli activating the auditory system and taction is able to produce interference phenomena at defined time points during the consolidation of social memory. This ability of such-nonsocial-stimuli may provide a new approach to dissect the brain processes underlying the generation of the social memory trace in further studies.
Collapse
|
12
|
Ménard C, Quirion R, Vigneault E, Bouchard S, Ferland G, El Mestikawy S, Gaudreau P. Glutamate presynaptic vesicular transporter and postsynaptic receptor levels correlate with spatial memory status in aging rat models. Neurobiol Aging 2014; 36:1471-82. [PMID: 25556161 DOI: 10.1016/j.neurobiolaging.2014.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 11/01/2014] [Accepted: 11/21/2014] [Indexed: 11/28/2022]
Abstract
In humans, memory capacities are generally affected with aging, even without any reported neurologic disorders. The mechanisms behind cognitive decline are not well understood. We studied here whether postsynaptic glutamate receptor and presynaptic vesicular glutamate transporters (VGLUTs) levels may change in the course of aging and be related to cognitive abilities using various age-impaired (AI) or age-unimpaired rat strains. Twenty-four-month-old Long-Evans (LE) rats with intact spatial memory maintained postsynaptic ionotropic glutamate receptor levels in the hippocampal-adjacent cortex similar to those of young animals. In contrast, AI rats showed significantly reduced expression of ionotropic glutamate receptor GluR2, NR2A and NR2B subunits. In AI LE rats, VGLUT1 and VGLUT2 levels were increased and negatively correlated with receptor levels as shown by principal component analysis and correlation matrices. We also investigated whether glutamatergic receptors and VGLUT levels were altered in the obesity-resistant LOU/C/Jall (LOU) rat strain which is characterized by intact memory despite aging. No difference was observed between 24-month-old LOU rats and their young counterparts. Taken together, the unaltered spatial memory performance of 24-month-old age-unimpaired LE and LOU rats suggests that intact coordination of the presynaptic and postsynaptic hippocampal-adjacent cortex glutamatergic networks may be important for successful cognitive aging. Accordingly, altered expression of presynaptic and postsynaptic glutamatergic components, such as in AI LE rats, could be considered a marker of age-related cognitive deficits.
Collapse
Affiliation(s)
- Caroline Ménard
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal Research Center, Montreal, Quebec, Canada; Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Rémi Quirion
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Erika Vigneault
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Sylvain Bouchard
- Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Guylaine Ferland
- Institut Universitaire de Gériatrie de Montréal Research Center, University of Montreal, Montreal, Quebec, Canada; Department of Nutrition, University of Montreal, Montreal, Quebec, Canada
| | - Salah El Mestikawy
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; INSERM U952, CNRS UMR7224, Université Pierre et Marie Curie, Paris, France
| | - Pierrette Gaudreau
- Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal Research Center, Montreal, Quebec, Canada; Department of Medicine, University of Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Ménard C, Quirion R, Bouchard S, Ferland G, Gaudreau P. Glutamatergic signaling and low prodynorphin expression are associated with intact memory and reduced anxiety in rat models of healthy aging. Front Aging Neurosci 2014; 6:81. [PMID: 24847259 PMCID: PMC4019859 DOI: 10.3389/fnagi.2014.00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/16/2014] [Indexed: 11/13/2022] Open
Abstract
The LOU/C/Jall (LOU) rat strain is considered a model of healthy aging due to its increased longevity, maintenance of stable body weight (BW) throughout life and low incidence of age-related diseases. However, aging LOU rat cognitive and anxiety status has yet to be investigated. In the present study, male and female LOU rat cognitive performances (6-42 months) were assessed using novel object recognition and Morris Water Maze tasks. Recognition memory remained intact in all LOU rats up to 42 months of age. As for spatial memory, old LOU rat performed similarly as young animals for learning acquisition, reversal learning, and retention. While LOU rat BW remained stable despite aging, 20-month-old ad-libitum-fed (OAL) male Sprague Dawley rats become obese. We determined if long-term caloric restriction (LTCR) prevents age-related BW increase and cognitive deficits in this rat strain, as observed in the obesity-resistant LOU rats. Compared to young animals, recognition memory was impaired in OAL but intact in 20-month-old calorie-restricted (OCR) rats. Similarly, OAL spatial learning acquisition was impaired but LTCR prevented the deficits. Exacerbated stress responses may favor age-related cognitive decline. In the elevated plus maze and open field tasks, LOU and OCR rats exhibited high levels of exploratory activity whereas OAL rats displayed anxious behaviors. Expression of prodynorphin (Pdyn), an endogenous peptide involved in stress-related memory impairments, was increased in the hippocampus of OAL rats. Group 1 metabotropic glutamate receptor 5 and immediate early genes Homer 1a and Arc expression, both associated with successful cognitive aging, were unaltered in aging LOU rats but lower in OAL than OCR rats. Altogether, our results, supported by principal component analysis and correlation matrix, suggest that intact memory and low anxiety are associated with glutamatergic signaling and low Pdyn expression in the hippocampus of non-obese aging rats.
Collapse
Affiliation(s)
- Caroline Ménard
- Neuroscience Division, Douglas Mental Health University Institute Research Center Montreal, QC, Canada ; Department of Psychiatry, McGill University Montreal, QC, Canada ; Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal Research Center Montreal, QC, Canada ; Department of Medicine, University of Montreal Montreal, QC, Canada
| | - Rémi Quirion
- Neuroscience Division, Douglas Mental Health University Institute Research Center Montreal, QC, Canada ; Department of Psychiatry, McGill University Montreal, QC, Canada
| | - Sylvain Bouchard
- Faculty of Medicine, University of Montreal Montreal, QC, Canada
| | - Guylaine Ferland
- Hôpital du Sacré-Coeur de Montréal Research Center Montreal, QC, Canada ; Department of Nutrition, University of Montreal Montreal, QC, Canada
| | - Pierrette Gaudreau
- Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal Research Center Montreal, QC, Canada ; Department of Medicine, University of Montreal Montreal, QC, Canada
| |
Collapse
|
14
|
Suraev AS, Bowen MT, Ali SO, Hicks C, Ramos L, McGregor IS. Adolescent exposure to oxytocin, but not the selective oxytocin receptor agonist TGOT, increases social behavior and plasma oxytocin in adulthood. Horm Behav 2014; 65:488-96. [PMID: 24631584 DOI: 10.1016/j.yhbeh.2014.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/17/2014] [Accepted: 03/02/2014] [Indexed: 11/28/2022]
Abstract
There are indications that exposing adolescent rodents to oxytocin (OT) may have positive "trait-changing" effects resulting in increased sociability and decreased anxiety that last well beyond acute drug exposure and into adulthood. Such findings may have relevance to the utility of OT in producing sustained beneficial effects in human psychiatric conditions. The present study further examined these effects using an intermittent regime of OT exposure in adolescence, and using Long Evans rats, that are generally more sensitive to the acute prosocial effects of OT. As OT has substantial affinity for the vasopressin V1a receptor (V1aR) in addition to the oxytocin receptor (OTR), we examined whether a more selective peptidergic OTR agonist - [Thr4, Gly7]-oxytocin (TGOT) - would have similar lasting effects on behavior. Male Long Evans rats received OT or TGOT (0.5-1mg/kg, intraperitoneal), once every three days, for a total of 10 doses during adolescence (postnatal day (PND) 28-55). Social and anxiety-related behaviors were assessed during acute administration as well as later in adulthood (from PND 70 onwards). OT produced greater acute behavioral effects than TGOT, including an inhibition of social play and reduced rearing, most likely reflecting primary sedative effects. In adulthood, OT but not TGOT pretreated rats displayed lasting increases in social interaction, accompanied by an enduring increase in plasma OT. These findings confirm lasting behavioral and neuroendocrine effects of adolescent OT exposure. However, the absence of such effects with TGOT suggests possible involvement of the V1aR as well as the OTR in this example of developmental neuroplasticity.
Collapse
Affiliation(s)
| | - Michael T Bowen
- School of Psychology, University of Sydney, NSW 2006, Australia
| | - Sinan O Ali
- School of Psychology, University of Sydney, NSW 2006, Australia
| | - Callum Hicks
- School of Psychology, University of Sydney, NSW 2006, Australia
| | - Linnet Ramos
- School of Psychology, University of Sydney, NSW 2006, Australia
| | - Iain S McGregor
- School of Psychology, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
15
|
Transport of animals between rooms: A little-noted aspect of laboratory procedure that may interfere with memory. Behav Processes 2011; 88:12-9. [DOI: 10.1016/j.beproc.2011.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 05/31/2011] [Accepted: 06/20/2011] [Indexed: 11/19/2022]
|
16
|
Wacker DW, Engelmann M, Tobin VA, Meddle SL, Ludwig M. Vasopressin and social odor processing in the olfactory bulb and anterior olfactory nucleus. Ann N Y Acad Sci 2011; 1220:106-16. [PMID: 21388408 DOI: 10.1111/j.1749-6632.2010.05885.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Central vasopressin facilitates social recognition and modulates numerous complex social behaviors in mammals, including parental behavior, aggression, affiliation, and pair-bonding. In rodents, social interactions are primarily mediated by the exchange of olfactory information, and there is evidence that vasopressin signaling is important in brain areas where olfactory information is processed. We recently discovered populations of vasopressin neurons in the main and accessory olfactory bulbs and anterior olfactory nucleus that are involved in the processing of social odor cues. In this review, we propose a model of how vasopressin release in these regions, potentially from the dendrites, may act to filter social odor information to facilitate odor-based social recognition. Finally, we discuss recent human research linked to vasopressin signaling and suggest that our model of priming-facilitated vasopressin signaling would be a rewarding target for further studies, as a failure of priming may underlie pathological changes in complex behaviors.
Collapse
Affiliation(s)
- Douglas W Wacker
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|