1
|
Minbo J, Feng C, Wen H, Jamil M, Zhang H, Abdel-Maksoud MA, Zakri AM, Almanaa TN, Alfuraydi AA, Almunqedhi BM. Up-regulated and hypomethylated genes are causative factors and diagnostic markers of osteoporosis. Am J Transl Res 2023; 15:6042-6057. [PMID: 37969207 PMCID: PMC10641362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/25/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Due to the lack of sensitive diagnostic biomarkers for osteoporosis (OP), there is an urgent need to identify and uncover biomarkers associated with the disease in order to facilitate early clinical diagnosis and effective intervention strategies. METHODS GEO2R was employed to conduct a screening of differentially expressed genes (DEGs) within the transcriptome sequencing data obtained from blood samples of OP patients within the GSE163849 dataset. Subsequently, we conducted expression confirmation of the identified DEGs using an additional dataset, GSE35959. To further explore Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, MicroRNA (miRNA) interactions, and drug predictions, we employed the DAVID, miRTarBase, and DrugBank databases. For validation purposes, clinical OP samples paired with normal controls were collected from the Pakistani population. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was employed to assess the expression levels of DEGs and miRNA, while targeted bisulfite sequencing (bisulfite-seq) analysis was used to investigate methylation patterns. DNA and RNA from clinical OP and normal control samples were extracted using appropriate methods. RESULTS Out of total identified 269 DEGs, EGFR (epidermal growth factor receptor), HMOX1 (heme oxygenase-1), PGR (progesterone receptor), CXCL10 (C-X-C motif chemokine ligand 10), CCL5 (C-C motif chemokine ligand 5), and IL12B (interleukin 12B) were prioritized as top DEGs in OP patients. Expression validation of these genes on additional Gene Expression Omnibus (GEO) dataset and Pakistani OP patients revealed consistent significant up-regulation of these genes in OP patients. Receiver operating characteristic (ROC) analysis demonstrated that these DEGs displayed considerable diagnostic accuracy for detecting OP. Targeted bisulfite-seq analysis further revealed that EGFR, HMOX1, PGR, CXCL10, CCL5, and IL12B were hypomethylated in OP patients. Moreover, has-miR-27a-5p, a common expression regulator of the EGFR, HMOX1, PGR, CXCL10, CCL5, and IL12B was also significantly down-regulated in OP patients. CONCLUSION The DEGs that have been identified hold significant potential for the future development of diagnostic and treatment approaches for OP in preclinical and clinical applications.
Collapse
Affiliation(s)
- Jiang Minbo
- Department of Orthopedic, Shanghai Songjiang District Central HospitalShanghai 201699, China
| | - Chen Feng
- Department of Orthopedics, Hongqi HospitalMuDanjiang 157011, Heilongjiang, China
| | - Hongli Wen
- Department of Foreign Language, MuDanjiang Medical UniversityMuDanjiang 157011, Heilongjiang, China
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| | - Heng Zhang
- Department of Orthopedic, Shanghai Songjiang District Central HospitalShanghai 201699, China
| | - Mostafa A Abdel-Maksoud
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Adel M Zakri
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud UniversityRiyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Akram A Alfuraydi
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bandar M Almunqedhi
- Department of Botany and Microbiology, College of Science, King Saud UniversityP.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Vang A, Salem K, Fowler AM. Progesterone Receptor Gene Polymorphisms and Breast Cancer Risk. Endocrinology 2023; 164:7005421. [PMID: 36702635 DOI: 10.1210/endocr/bqad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
The objective of this systematic review was to investigate the association between polymorphisms in the progesterone receptor gene (PGR) and breast cancer risk. A search of PubMed, Scopus, and Web of Science databases was performed in November 2021. Study characteristics, minor allele frequencies, genotype frequencies, and odds ratios were extracted. Forty studies met the eligibility criteria and included 75 032 cases and 89 425 controls. Of the 84 PGR polymorphisms reported, 7 variants were associated with breast cancer risk in at least 1 study. These polymorphisms included an Alu insertion (intron 7) and rs1042838 (Val660Leu), also known as PROGINS. Other variants found to be associated with breast cancer risk included rs3740753 (Ser344Thr), rs10895068 (+331G/A), rs590688 (intron 2), rs1824128 (intron 3), and rs10895054 (intron 6). Increased risk of breast cancer was associated with rs1042838 (Val660Leu) in 2 studies, rs1824128 (intron 3) in 1 study, and rs10895054 (intron 6) in 1 study. The variant rs3740753 (Ser344Thr) was associated with decreased risk of breast cancer in 1 study. Mixed results were reported for rs590688 (intron 2), rs10895068 (+331G/A), and the Alu insertion. In a pooled analysis, the Alu insertion, rs1042838 (Val660Leu), rs3740753 (Ser344Thr), and rs10895068 (+331G/A) were not associated with breast cancer risk. Factors reported to contribute to differences in breast cancer risk associated with PGR polymorphisms included age, ethnicity, obesity, and postmenopausal hormone therapy use. PGR polymorphisms may have a small contribution to breast cancer risk in certain populations, but this is not conclusive with studies finding no association in larger, mixed populations.
Collapse
Affiliation(s)
- Alecia Vang
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Kelley Salem
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| | - Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
3
|
Khorshid Shamshiri A, Alidoust M, Hemmati Nokandei M, Pasdar A, Afzaljavan F. Genetic architecture of mammographic density as a risk factor for breast cancer: a systematic review. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1729-1747. [PMID: 36639603 DOI: 10.1007/s12094-022-03071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Mammography Density (MD) is a potential risk marker that is influenced by genetic polymorphisms and can subsequently modulate the risk of breast cancer. This qualitative systematic review summarizes the genes and biological pathways involved in breast density and discusses the potential clinical implications in view of the genetic risk profile for breast density. METHODS The terms related to "Common genetic variations" and "Breast density" were searched in Scopus, PubMed, and Web of Science databases. Gene pathways analysis and assessment of protein interactions were also performed. RESULTS Eighty-six studies including 111 genes, reported a significant association between mammographic density in different populations. ESR1, IGF1, IGFBP3, and ZNF365 were the most prevalent genes. Moreover, estrogen metabolism, signal transduction, and prolactin signaling pathways were significantly related to the associated genes. Mammography density was an associated phenotype, and eight out of 111 genes, including COMT, CYP19A1, CYP1B1, ESR1, IGF1, IGFBP1, IGFBP3, and LSP1, were modifiers of this trait. CONCLUSION Genes involved in developmental processes and the evolution of secondary sexual traits play an important role in determining mammographic density. Due to the effect of breast tissue density on the risk of breast cancer, these genes may also be associated with breast cancer risk.
Collapse
Affiliation(s)
- Asma Khorshid Shamshiri
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Alidoust
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Hemmati Nokandei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Fahimeh Afzaljavan
- Clinical Research Development Unit, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, 917794-8564, Iran.
| |
Collapse
|
4
|
Akinjiyan FA, Han Y, Luo J, Toriola AT. Does circulating progesterone mediate the associations of single nucleotide polymorphisms in progesterone receptor (PGR)-related genes with mammographic breast density in premenopausal women? Discov Oncol 2021; 12:47. [PMID: 34790961 PMCID: PMC8566393 DOI: 10.1007/s12672-021-00438-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/28/2021] [Indexed: 10/31/2022] Open
Abstract
Progesterone is a proliferative hormone in the breast but the associations of genetic variations in progesterone-regulated pathways with mammographic breast density (MD) in premenopausal women and whether these associations are mediated through circulating progesterone are not clearly defined. We, therefore, investigated these associations in 364 premenopausal women with a median age of 44 years. We sequenced 179 progesterone receptor (PGR)-related single nucleotide polymorphisms (SNPs). We measured volumetric percent density (VPD) and non-dense volume (NDV) using Volpara. Linear regression models were fit on circulating progesterone or VPD/NDV separately. We performed mediation analysis to evaluate whether the effect of a SNP on VPD/NDV is mediated through circulating progesterone. All analyses were adjusted for confounders, phase of menstrual cycle and the Benjamini-Hochberg false discovery (FDR) adjusted p-value was applied to correct for multiple testing. In multivariable analyses, only PGR rs657516 had a direct effect on VPD (averaged direct effect estimate = - 0.20, 95%CI = - 0.38 ~ - 0.04, p-value = 0.02) but this was not statistically significant after FDR correction and the effect was not mediated by circulating progesterone (mediation effect averaged across the two genotypes = 0.01, 95%CI = - 0.02 ~ 0.03, p-value = 0.70). Five SNPs (PGR rs11571241, rs11571239, rs1824128, rs11571150, PGRMC1 rs41294894) were associated with circulating progesterone but these were not statistically significant after FDR correction. SNPs in PGR-related genes were not associated with VPD, NDV and circulating progesterone did not mediate the associations, suggesting that the effects, if any, of these SNPs on MD are independent of circulating progesterone. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12672-021-00438-1.
Collapse
Affiliation(s)
- Favour A. Akinjiyan
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Yunan Han
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, Campus Box 8100, 660 South Euclid Ave, St. Louis, MO 63110 USA
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang, 110001 Liaoning Province China
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, Campus Box 8100, 660 South Euclid Ave, St. Louis, MO 63110 USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Adetunji T. Toriola
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, Campus Box 8100, 660 South Euclid Ave, St. Louis, MO 63110 USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
5
|
Hormone-related pathways and risk of breast cancer subtypes in African American women. Breast Cancer Res Treat 2015; 154:145-54. [PMID: 26458823 DOI: 10.1007/s10549-015-3594-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 12/28/2022]
Abstract
We sought to investigate genetic variation in hormone pathways in relation to risk of overall and subtype-specific breast cancer in women of African ancestry (AA). Genotyping and imputation yielded data on 143,934 SNPs in 308 hormone-related genes for 3663 breast cancer cases (1098 ER-, 1983 ER+, 582 ER unknown) and 4687 controls from the African American Breast Cancer Epidemiology and Risk (AMBER) Consortium. AMBER includes data from four large studies of AA women: the Carolina Breast Cancer Study, the Women's Circle of Health Study, the Black Women's Health Study, and the Multiethnic Cohort Study. Pathway- and gene-based analyses were conducted, and single-SNP tests were run for the top genes. There were no strong associations at the pathway level. The most significantly associated genes were GHRH, CALM2, CETP, and AKR1C1 for overall breast cancer (gene-based nominal p ≤ 0.01); NR0B1, IGF2R, CALM2, CYP1B1, and GRB2 for ER+ breast cancer (p ≤ 0.02); and PGR, MAPK3, MAP3K1, and LHCGR for ER- disease (p ≤ 0.02). Single-SNP tests for SNPs with pairwise linkage disequilibrium r (2) < 0.8 in the top genes identified 12 common SNPs (in CALM2, CETP, NR0B1, IGF2R, CYP1B1, PGR, MAPK3, and MAP3K1) associated with overall or subtype-specific breast cancer after gene-level correction for multiple testing. Rs11571215 in PGR (progesterone receptor) was the SNP most strongly associated with ER- disease. We identified eight genes in hormone pathways that contain common variants associated with breast cancer in AA women after gene-level correction for multiple testing.
Collapse
|