1
|
Kiran K, Patil KN. Characterization of Staphylococcus aureus RecX protein: Molecular insights into negative regulation of RecA protein and implications in HR processes. J Biochem 2023; 174:227-237. [PMID: 37115499 DOI: 10.1093/jb/mvad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Homologous recombination (HR) is essential for genome stability and for maintaining genetic diversity. In eubacteria, RecA protein plays a key role during DNA repair, transcription, and HR. RecA is regulated at multiple levels, but majorly by RecX protein. Moreover, studies have shown RecX is a potent inhibitor of RecA and thus acts as an antirecombinase. Staphylococcus aureus is a major food-borne pathogen that causes skin, bone joint, and bloodstream infections. To date, RecX's role in S. aureus has remained enigmatic. Here, we show that S. aureus RecX (SaRecX) is expressed during exposure to DNA-damaging agents, and purified RecX protein directly interacts physically with RecA protein. The SaRecX is competent to bind with single-stranded DNA preferentially and double-stranded DNA feebly. Significantly, SaRecX impedes the RecA-driven displacement loop and inhibits formation of the strand exchange. Notably, SaRecX also abrogates adenosine triphosphate hydrolysis and abolishes the LexA coprotease activity. These findings highlight the role of the RecX protein as an antirecombinase during HR and play a pivotal role in regulation of RecA during the DNA transactions.
Collapse
Affiliation(s)
- Kajal Kiran
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - K Neelakanteshwar Patil
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute (CSIR-CFTRI), Mysuru 570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Knadler C, Rolfsmeier M, Vallejo A, Haseltine C. Characterization of an archaeal recombinase paralog that exhibits novel anti-recombinase activity. Mutat Res 2020; 821:111703. [PMID: 32416400 DOI: 10.1016/j.mrfmmm.2020.111703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/01/2020] [Indexed: 01/31/2023]
Abstract
The process of homologous recombination is heavily dependent on the RecA family of recombinases for repair of DNA double-strand breaks. These recombinases are responsible for identifying homologies and forming heteroduplex DNA between substrate ssDNA and dsDNA templates, activities that are modified by various accessory factors. In this work we describe the biochemical functions of the SsoRal2 recombinase paralog from the crenarchaeon Sulfolobus solfataricus. We found that the SsoRal2 protein is a DNA-independent ATPase that, unlike the other S. solfataricus paralogs, does not bind either ss- or dsDNA. Instead, SsoRal2 alters the ssDNA binding activity of the SsoRadA recombinase in conjunction with another paralog, SsoRal1. In the presence of SsoRal1, SsoRal2 has a modest effect on strand invasion but effectively abrogates strand exchange activity. Taken together, these results indicate that SsoRal2 assists in nucleoprotein filament modulation and control of strand exchange in S. solfataricus.
Collapse
Affiliation(s)
- Corey Knadler
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States
| | - Michael Rolfsmeier
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States
| | - Antonia Vallejo
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States
| | - Cynthia Haseltine
- Washington State University, Biotech/LifeSciences Rm 137, Pullman, 99164, United States.
| |
Collapse
|
3
|
Leite WC, Penteado RF, Gomes F, Iulek J, Etto RM, Saab SC, Steffens MBR, Galvão CW. MAW point mutation impairs H. Seropedicae RecA ATP hydrolysis and DNA repair without inducing large conformational changes in its structure. PLoS One 2019; 14:e0214601. [PMID: 30998678 PMCID: PMC6472873 DOI: 10.1371/journal.pone.0214601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/17/2019] [Indexed: 11/18/2022] Open
Abstract
RecA is a multifunctional protein that plays a central role in DNA repair in bacteria. The structural Make ATP Work motif (MAW) is proposed to control the ATPase activity of RecA. In the present work, we report the biochemical activity and structural effects of the L53Q mutation at the MAW motif of the RecA protein from H. seropedicae (HsRecA L53Q). In vitro studies showed that HsRecA L53Q can bind ADP, ATP, and ssDNA, as does wild-type RecA. However, the ATPase and DNA-strand exchange activities were completely lost. In vivo studies showed that the expression of HsRecA L53Q in E. coli recA1 does not change its phenotype when cells were challenged with MMS and UV. Molecular dynamics simulations showed the L53Q point mutation did not cause large conformational changes in the HsRecA structure. However, there is a difference on dynamical cross-correlation movements of the residues involved in contacts within the ATP binding site and regions that hold the DNA binding sites. Additionally, a new hydrogen bond, formed between Q53 and T49, was hypothesized to allow an independent motion of the MAW motif from the hydrophobic core, what could explain the observed loss of activity of HsRecA L53Q.
Collapse
Affiliation(s)
- Wellington C. Leite
- Department of Physics, State University of Ponta Grossa (UEPG), Ponta Grossa,Paraná, Brazil
- * E-mail: (WCL); .(CWG)
| | - Renato F. Penteado
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Fernando Gomes
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jorge Iulek
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Rafael M. Etto
- Department of Chemistry, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
| | - Sérgio C. Saab
- Department of Physics, State University of Ponta Grossa (UEPG), Ponta Grossa,Paraná, Brazil
| | - Maria B. R. Steffens
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Carolina W. Galvão
- Department of Structural and Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa, Paraná, Brazil
- * E-mail: (WCL); .(CWG)
| |
Collapse
|
4
|
Lourenço J, Watkins ER, Obolski U, Peacock SJ, Morris C, Maiden MCJ, Gupta S. Lineage structure of Streptococcus pneumoniae may be driven by immune selection on the groEL heat-shock protein. Sci Rep 2017; 7:9023. [PMID: 28831154 PMCID: PMC5567354 DOI: 10.1038/s41598-017-08990-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022] Open
Abstract
Populations of Streptococcus pneumoniae (SP) are typically structured into groups of closely related organisms or lineages, but it is not clear whether they are maintained by selection or neutral processes. Here, we attempt to address this question by applying a machine learning technique to SP whole genomes. Our results indicate that lineages evolved through immune selection on the groEL chaperone protein. The groEL protein is part of the groESL operon and enables a large range of proteins to fold correctly within the physical environment of the nasopharynx, thereby explaining why lineage structure is so stable within SP despite high levels of genetic transfer. SP is also antigenically diverse, exhibiting a variety of distinct capsular serotypes. Associations exist between lineage and capsular serotype but these can be easily perturbed, such as by vaccination. Overall, our analyses indicate that the evolution of SP can be conceptualized as the rearrangement of modular functional units occurring on several different timescales under different pressures: some patterns have locked in early (such as the epistatic interactions between groESL and a constellation of other genes) and preserve the differentiation of lineages, while others (such as the associations between capsular serotype and lineage) remain in continuous flux.
Collapse
Affiliation(s)
- José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | | - Uri Obolski
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Samuel J Peacock
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | | | | | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Leite WC, Galvão CW, Saab SC, Iulek J, Etto RM, Steffens MBR, Chitteni-Pattu S, Stanage T, Keck JL, Cox MM. Structural and Functional Studies of H. seropedicae RecA Protein - Insights into the Polymerization of RecA Protein as Nucleoprotein Filament. PLoS One 2016; 11:e0159871. [PMID: 27447485 PMCID: PMC4957752 DOI: 10.1371/journal.pone.0159871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/08/2016] [Indexed: 11/18/2022] Open
Abstract
The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.
Collapse
Affiliation(s)
- Wellington C. Leite
- Department of Physics, Ponta Grossa State University (UEPG), Av. Carlos Cavalcanti, 4748, CEP. 84.030–900, Ponta Grossa, PR, Brazil
- * E-mail: (MC); (WL)
| | - Carolina W. Galvão
- Department of Structural and Molecular Biology and Genetics, Ponta Grossa State University (UEPG), CEP 84030–900, Ponta Grossa, PR, Brazil
| | - Sérgio C. Saab
- Department of Physics, Ponta Grossa State University (UEPG), Av. Carlos Cavalcanti, 4748, CEP. 84.030–900, Ponta Grossa, PR, Brazil
| | - Jorge Iulek
- Department of Chemistry, Ponta Grossa State University (UEPG), CEP 84030–900, Ponta Grossa, PR, Brazil
| | - Rafael M. Etto
- Department of Chemistry, Ponta Grossa State University (UEPG), CEP 84030–900, Ponta Grossa, PR, Brazil
| | - Maria B. R. Steffens
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CEP 81531–980 Curitiba, Brazil
| | - Sindhu Chitteni-Pattu
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, 53706–1544, United States of America
| | - Tyler Stanage
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, 53706–1544, United States of America
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, United States of America
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, 53706–1544, United States of America
- * E-mail: (MC); (WL)
| |
Collapse
|
6
|
Li L, Chen Z, Ding X, Shan Z, Liu L, Guo J. Deep sequencing analysis of the Kineococcus radiotolerans transcriptome in response to ionizing radiation. Microbiol Res 2014; 170:248-54. [PMID: 25467197 DOI: 10.1016/j.micres.2014.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/07/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
Kineococcus radiotolerans is a gram-positive, radiation-resistant bacterium that was isolated from a radioactive environment. The synergy of several groups of genes is thought to contribute to the radio-resistance of this species of bacteria. Sequencing of the transcriptome, RNA sequencing (RNA-seq), using deep sequencing technology can reveal the genes that are differentially expressed in response to radiation in this bacterial strain. In this study, the transcriptomes of two samples (with and without irradiation treatment) were sequencing by deep sequencing technology. After the bioinformatics process, 143 genes were screened out by the differential expression (DE) analysis. In all 143 differentially expressed genes, 20 genes were annotated to be related to the radio-resistance based on the cluster analysis by the cluster of orthologous groups of proteins (COG) annotation which were validated by the quantitative RT-PCR. The pathway analysis revealed that these 20 validated genes were related to DNA damage repair, including recA, ruvA and ruvB, which were considered to be the key genes in DNA damage repair. This study provides the foundation to investigate the regulatory mechanism of these genes.
Collapse
Affiliation(s)
- Lufeng Li
- College of Life Sciences, Zhejiang Sci-Tech University, No.2 Road, Xiasha, Hangzhou, Zhejiang, PR China.
| | - Zhouwei Chen
- College of Life Sciences, Zhejiang Sci-Tech University, No.2 Road, Xiasha, Hangzhou, Zhejiang, PR China.
| | - Xianfeng Ding
- College of Life Sciences, Zhejiang Sci-Tech University, No.2 Road, Xiasha, Hangzhou, Zhejiang, PR China.
| | - Zhan Shan
- College of Life Sciences, Zhejiang Sci-Tech University, No.2 Road, Xiasha, Hangzhou, Zhejiang, PR China.
| | - Lili Liu
- College of Life Sciences, Zhejiang Sci-Tech University, No.2 Road, Xiasha, Hangzhou, Zhejiang, PR China.
| | - Jiangfeng Guo
- College of Life Sciences, Zhejiang Sci-Tech University, No.2 Road, Xiasha, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
7
|
Shvetsov AV, Lebedev DV, Chervyakova DB, Bakhlanova IV, Yung IA, Radulescu A, Kuklin AI, Baitin DM, Isaev-Ivanov VV. Structure of RecX protein complex with the presynaptic RecA filament: Molecular dynamics simulations and small angle neutron scattering. FEBS Lett 2014; 588:948-55. [PMID: 24530684 DOI: 10.1016/j.febslet.2014.01.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/17/2014] [Accepted: 01/28/2014] [Indexed: 11/18/2022]
Abstract
Using molecular modeling techniques we have built the full atomic structure and performed molecular dynamics simulations for the complexes formed by Escherichia coli RecX protein with a single-stranded oligonucleotide and with RecA presynaptic filament. Based on the modeling and SANS experimental data a sandwich-like filament structure formed two chains of RecX monomers bound to the opposite sides of the single stranded DNA is proposed for RecX::ssDNA complex. The model for RecX::RecA::ssDNA include RecX binding into the grove of RecA::ssDNA filament that occurs mainly via Coulomb interactions between RecX and ssDNA. Formation of RecX::RecA::ssDNA filaments in solution was confirmed by SANS measurements which were in agreement with the spectra computed from the molecular dynamics simulations.
Collapse
Affiliation(s)
- Alexey V Shvetsov
- Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia; St. Petersburg State Polytechnical University, St. Petersburg, Russia.
| | - Dmitry V Lebedev
- Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia.
| | - Daria B Chervyakova
- Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia; Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Irina V Bakhlanova
- Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia
| | - Igor A Yung
- Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia; St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | - Aurel Radulescu
- Jülich Centre for Neutron Science Outstation at FRM II, Garching, Germany
| | | | - Dmitry M Baitin
- Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia; St. Petersburg State Polytechnical University, St. Petersburg, Russia
| | | |
Collapse
|