1
|
Cheng Y, Meng Y, Liu S. Diversified Techniques for Restructuring Meat Protein-Derived Products and Analogues. Foods 2024; 13:1950. [PMID: 38928891 PMCID: PMC11202613 DOI: 10.3390/foods13121950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
Accompanied by the rapid growth of the global population and increasing public awareness of protein-rich foods, the market demand for protein-derived products is booming. Utilizing available technologies to make full use of meat by-products, such as scraps, trimmings, etc., to produce restructured meat products and explore emerging proteins to produce meat analogues can be conducive to alleviating the pressure on supply ends of the market. The present review summarizes diversified techniques (such as high-pressure processing, ultrasonic treatment, edible polysaccharides modification, enzymatic restructuring, etc.) that have been involved in restructuring meat protein-derived products as well as preparing meat analogues identified so far and classifying them into three main categories (physical, chemical and enzymatic). The target systems, processing conditions, effects, advantages, etc., of the included techniques, are comprehensively and systemically summarized and discussed, and their existing problems or developing trends are also briefly prospected. It can be concluded that a better quality of restructured products can be obtained by the combination of different restructuring technologies. This review provides a valuable reference both for the research and industrial production of restructured meat protein-derived products and analogues.
Collapse
Affiliation(s)
- Yuliang Cheng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yiyun Meng
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Y.M.); (S.L.)
| | - Shengnan Liu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China; (Y.M.); (S.L.)
| |
Collapse
|
2
|
Lee EJ, Hong GP. Effects of microbial transglutaminase and alginate on the water-binding, textural and oil absorption properties of soy patties. Food Sci Biotechnol 2020; 29:777-782. [PMID: 32523787 DOI: 10.1007/s10068-019-00713-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 11/08/2019] [Indexed: 11/29/2022] Open
Abstract
This study investigated the effects of microbial transglutaminase (TG) and sodium alginate (AL) on the water-binding, textural and oil absorption properties of soy patties as a representative meat analog. The addition of TG increased all textural parameters and decreased the expressible moisture of the product. Alternately, AL showed the high water-binding properties of soy patties but caused a decrease in the textural parameters of the product. Both TG and AL were effective in reducing oil absorption during the frying of the product, particularly TG, which was more effective than AL. Therefore, the results indicated that TG and AL were involved in the quality modification of soy-based meat analogs, and palatable eating quality was obtained by combining optimal levels of the two binding agents.
Collapse
Affiliation(s)
- Eun-Jung Lee
- Department of Food Science and Biotechnology, Sejong University, Seoul, 05006 Korea
| | - Geun-Pyo Hong
- Department of Food Science and Biotechnology, Sejong University, Seoul, 05006 Korea
| |
Collapse
|
3
|
Mostafa HS. Microbial transglutaminase: An overview of recent applications in food and packaging. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1720660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Heba Sayed Mostafa
- Faculty of Agriculture, Department of Food Science, University of Cairo, Giza, Egypt
| |
Collapse
|
5
|
Vázquez JA, Meduíña A, Durán AI, Nogueira M, Fernández-Compás A, Pérez-Martín RI, Rodríguez-Amado I. Production of Valuable Compounds and Bioactive Metabolites from By-Products of Fish Discards Using Chemical Processing, Enzymatic Hydrolysis, and Bacterial Fermentation. Mar Drugs 2019; 17:E139. [PMID: 30818811 PMCID: PMC6470541 DOI: 10.3390/md17030139] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022] Open
Abstract
The objective of this report was to investigate the isolation and recovery of different biocompounds and bioproducts from wastes (skins and heads) that were obtained from five species discarded by fishing fleets (megrim, hake, boarfish, grenadier, and Atlantic horse mackerel). Based on chemical treatments, enzymatic hydrolysis, and bacterial fermentation, we have isolated and produced gelatinous solutions, oils that are rich in omega-3, fish protein hydrolysates (FPHs) with antioxidant and antihypertensive activities, and peptones. FPHs showed degrees of hydrolysis higher than 13%, with soluble protein concentrations greater than 27 g/L and in vitro digestibilities superior to 90%. Additionally, amino acids compositions were always valuable and bioactivities were, in some cases, remarkable. Peptones that were obtained from FPHs of skin and the heads were demonstrated to be a viable alternative to expensive commercial ones indicated for the production of biomass, lactic acid, and pediocin SA-1 from Pediococcus acidilactici.
Collapse
Affiliation(s)
- José Antonio Vázquez
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Araceli Meduíña
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Ana I Durán
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Margarita Nogueira
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Reciclado y Valorización de Materiales Residuales (REVAL), Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Andrea Fernández-Compás
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Paseo Victoria Ocampo N°1 Escollera Norte, Mar del Plata C.C.175-7600, Argentina.
| | - Ricardo I Pérez-Martín
- Grupo de Biotecnología y Bioprocesos Marinos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
- Laboratorio de Bioquímica de Alimentos, Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, CP 36208 Vigo, Galicia, España.
| | - Isabel Rodríguez-Amado
- Departamento de Química Analítica y Alimentaria, Universidad de Vigo, Campus As Lagoas s/n, 32004 Ourense, España.
| |
Collapse
|
6
|
Anchovy mince ( Engraulis ringens ) enriched with polyphenol-rich grape pomace dietary fibre: In vitro polyphenols bioaccessibility, antioxidant and physico-chemical properties. Food Res Int 2017; 102:639-646. [DOI: 10.1016/j.foodres.2017.09.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/15/2017] [Accepted: 09/17/2017] [Indexed: 11/24/2022]
|
7
|
Fernandes P. Enzymes in Fish and Seafood Processing. Front Bioeng Biotechnol 2016; 4:59. [PMID: 27458583 PMCID: PMC4935696 DOI: 10.3389/fbioe.2016.00059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/24/2016] [Indexed: 11/15/2022] Open
Abstract
Enzymes have been used for the production and processing of fish and seafood for several centuries in an empirical manner. In recent decades, a growing trend toward a rational and controlled application of enzymes for such goals has emerged. Underlying such pattern are, among others, the increasingly wider array of enzyme activities and enzyme sources, improved enzyme formulations, and enhanced requirements for cost-effective and environmentally friendly processes. The better use of enzyme action in fish- and seafood-related application has had a significant impact on fish-related industry. Thus, new products have surfaced, product quality has improved, more sustainable processes have been developed, and innovative and reliable analytical techniques have been implemented. Recent development in these fields are presented and discussed, and prospective developments are suggested.
Collapse
Affiliation(s)
- Pedro Fernandes
- Department of Bioengineering, Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal
| |
Collapse
|
8
|
García Fillería SF, Tironi VA. Application of amaranth protein isolate and hydrolysate on a reduced salt fish restructured product: antioxidant properties, textural and microbiological effects. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12777] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Susan F. García Fillería
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - CCT-La Plata-CONICET, UNLP; 47 y 116 1900 La Plata Argentina
| | - Valeria A. Tironi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - CCT-La Plata-CONICET, UNLP; 47 y 116 1900 La Plata Argentina
| |
Collapse
|