1
|
Geng X, Yang H, Gao W, Yue J, Mu D, Wei Z. Greenhouse gas emission characteristics during kitchen waste composting with biochar and zeolite addition. BIORESOURCE TECHNOLOGY 2024; 399:130575. [PMID: 38479629 DOI: 10.1016/j.biortech.2024.130575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Aerobic kitchen waste composting can contribute to greenhouse gas (GHGs) emissions and global warming. This study investigated the effects of biochar and zeolite on GHGs emissions during composting. The findings demonstrated that biochar could reduce N2O and CH4 cumulative releases by 47.7 %and 47.9 %, respectively, and zeolite could reduce the cumulative release of CO2 by 28.4 %. Meanwhile, the biochar and zeolite addition could reduce the abundance of potential core microorganisms associated with GHGs emissions. In addition, biochar and zeolite reduced N2O emissions by regulating the abundance of nitrogen conversion functional genes. Biochar and zeolite were shown to reduce the impact of bacterial communities on GHGs emissions. In summary, this study revealed that biochar and zeolite can effectively reduce GHG emissions during composting by altering the compost microenvironment and regulating microbial community structure. Such findings are valuable for facilitating high-quality resource recovery of organic solid waste.
Collapse
Affiliation(s)
- Xinyu Geng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Jieyu Yue
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Daichen Mu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
2
|
Qu F, Cheng H, Han Z, Wei Z, Song C. Identification of driving factors of lignocellulose degrading enzyme genes in different microbial communities during rice straw composting. BIORESOURCE TECHNOLOGY 2023; 381:129109. [PMID: 37169202 DOI: 10.1016/j.biortech.2023.129109] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
The study aims to clarify the driving factors of lignocellulose degrading enzyme genes abundance during rice straw composting. Lignocellulose degrading strains b4 (Bacillus subtilis), z1 (Aspergillus fumigatus) were inoculated into pure culture, respectively. Meanwhile, three rice straw composting groups were set up, named CK (control), B4 (inoculating b4) and Z1 (inoculating z1). Results confirmed the composition of functional genes related to lignocellulose metabolism for strains. Lignocellulose degrading enzyme genes abundance was up-regulated by inoculation, which promoted the decomposition of lignocellulose. Modular microorganisms, such as Actinobacteria, Proteobacteria, Ascomycetes and Basidiomycetes, were identified as driving factors that affected lignocellulose degrading enzyme genes abundance. pH, organic matter and soluble sugar content affected lignocellulose degrading enzyme genes abundance by affecting modular microorganisms. In addition, a potential priming effect was put forward based on the driving factors. This study provided theoretical guidance for regulating the abundance of lignocellulose degrading enzyme genes to promote lignocellulose degradation.
Collapse
Affiliation(s)
- Fengting Qu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Hanpeng Cheng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Ziyi Han
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| | - Caihong Song
- College of Life Sciences, Liaocheng University, Liaocheng 25200, China
| |
Collapse
|
3
|
Fagundes DJ, Carrara FL, Teixeira WA, Simões RS, Taha MO. The role of the exogenous supply of adenosine triphosphate in the expression of Bax and Bcl2L1 genes in intestinal ischemia and reperfusion in rats 1. Acta Cir Bras 2019; 33:889-895. [PMID: 30484498 DOI: 10.1590/s0102-865020180100000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/12/2018] [Indexed: 01/29/2023] Open
Abstract
PURPOSE To investigate the role of the exogenous supply of adenosine triphosphate (ATP) in the expression of Bax and Bcl2L1 genes in intestinal ischemia and reperfusion (IR) in rats. METHODS The study was designed as a randomized controlled trial with a blinded assessment of the outcome. Eighteen adult male Wistar-EPM1 rats were housed under controlled temperature and light conditions (22-23°C, 12 h light/dark cycle). The animals were randomly divided into 3 groups: 1. Sham group (SG): no clamping of the superior mesenteric artery; 2. Ischemia and reperfusion group (IRG): 3. Ischemia and reperfusion plus ATP (IRG + ATP). ATP was injected in the femoral vein before and after ischemia. Afterwards, intestinal segments were appropriately removed and processed for Endothelial Cell Biology Rat RT2 Profiler PCR Array. RESULTS ATP promoted the upregulation of Bcl2L1 gene expression, whereas it did not have significant effects on Bax gene expression. In addition, the relation of Bax/Bcl2L1 gene expression in the IRG group was 1.39, whereas it was 0.43 in the IRG + ATP group. Bcl2L1 plays a crucial role in protecting against intestinal apoptosis after ischemia and reperfusion. Increased Bcl2L1 expression can inhibit apoptosis while decreased Bcl2L1 expression can trigger apoptosis. CONCLUSION Adenosine triphosphate was associated with antiapoptotic effects on the rat intestine ischemia and reperfusion by upregulating of Bcl2L1 gene expression.
Collapse
Affiliation(s)
- Djalma José Fagundes
- PhD, Full Professor, Division of Surgical Techniques and Experimental Surgery, Department of Surgery, Universidade Federal de São Paulo (UNIFESP), Sao Paulo-SP, Brazil. Conception and design of the study, critical revision, final approval
| | - Fernando Lopes Carrara
- Graduate student, Universidade Anhembi Morumbi, Sao Paulo-SP, Brazil. Acquisition of data, technical procedures, manuscript preparation
| | - William Andrade Teixeira
- Graduate student, Universidade Anhembi Morumbi, Sao Paulo-SP, Brazil. Acquisition of data, technical procedures, manuscript preparation
| | - Ricardo Santos Simões
- PhD, Department of Morphology and Genetic, UNIFESP, Sao Paulo-SP, Brazil. Analysis of data, manuscript writing, final approval
| | - Murched Omar Taha
- PhD, Associate Professor, Division of Surgical Techniques and Experimental Surgery, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Conception and design of the study, critical revision
| |
Collapse
|
4
|
Taha MO, Silva TDMAE, Ota KS, Vilela WJ, Simões RS, Starzewski Junior A, Fagundes DJ. The role of atenolol in the modulation of the expression of genes encoding pro- (caspase-1) and anti- (Bcl2L1) apoptotic proteins in endothelial cells exposed to intestinal ischemia and reperfusion in rats. Acta Cir Bras 2019; 33:1061-1066. [PMID: 30624511 DOI: 10.1590/s0102-865020180120000003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/23/2018] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate the role of atenolol in the gene expression of caspase 1 (Casp1) and Bcl2L1 on vascular endothelium of rat intestine after ischemia and reperfusion (IR). METHODS Eighteen adult male Wistar rats were randomly divided into 3 groups (n=6): SG (Sham group): no clamping of the superior mesenteric artery; IRG: IR plus saline group: IRG+At: IR plus Atenolol group. Rats from IRG and IRG+At were subjected to 60 min of intestinal ischemia and 120 min of reperfusion. Atenolol (2mg/kg) or saline were injected in the femoral vein 5 min before ischemia, 5 min and 55 min after reperfusion. Thereafter, intestinal segments were appropriately removed and processed for Endothelial Cell Biology Rat RT2 Profiler PCR Array. RESULTS the anti-apoptotic Bcl2L1 gene expression was significantly down-regulated (-1.10) in the IRG and significantly up-regulated in the IRG+At (+14.15). Meanwhile, despite Casp1 gene expression was upregulated in both groups, it was significantly higher in the IRG (+35.06) than the IRG+At (+6.68). CONCLUSIONS Atenolol presents antiapoptotic effects on rat intestine subjected to IR partly by the up-regulation of the anti-apoptotic Bcl2L1 gene expression. Moreover, atenolol can mitigate the pro-apoptotic and pro-inflammatory effects of Casp1 gene on rat intestine after IR.
Collapse
Affiliation(s)
- Murched Omar Taha
- PhD, Associated Professor, Surgical Technique and Experimental Surgery, Universidade Federal de São Paulo (UNIFESP), Brazil. Conception and design of the study, critical revision, final approval
| | - Thaís de Melo Alexandre E Silva
- Graduate student, Medical School, Universidade Anhembi Morumbi, Sao Paulo-SP, Brazil. Acquisition of data, technical procedures, manuscript preparation
| | - Keimy Saori Ota
- Graduate student, Medical School, Universidade Anhembi Morumbi, Sao Paulo-SP, Brazil. Acquisition of data, technical procedures, manuscript preparation
| | - Wander Junqueira Vilela
- Graduate student, Medical School, Universidade Anhembi Morumbi, Sao Paulo-SP, Brazil. Acquisition of data, technical procedures, manuscript preparation
| | - Ricardo Santos Simões
- PhD, Department of Morphology and Genetic, UNIFESP, Sao Paulo-SP, Brazil. Analysis of data, manuscript preparation and writing
| | - Alberto Starzewski Junior
- MD, Assistant Professor, Medical School, Universidade Anhembi Morumbi, Sao Paulo-SP, Brazil. Conception of the study, critical revision
| | - Djalma José Fagundes
- PhD, Full Professor, Division of Surgical Techniques and Experimental Surgery, Department of Surgery, UNIFESP, Sao Paulo-SP, Brazil. Conception and design of the study, critical revision, final approval
| |
Collapse
|
5
|
Ikejiri AT, Somaio Neto F, Bertoletto PR, Chaves JC, WakateTeruya AK, Kassuya CAL, Taha MO, Fagundes DJ. Effect of hyperbaric oxygenation on the expression of glutathione peroxidase 4 and lactoperoxidase genes in the lung of isogenic mice after ischemia/reperfusion injury in the small bowel. Acta Cir Bras 2018; 33:462-471. [PMID: 29924206 DOI: 10.1590/s0102-865020180050000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/13/2018] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To evaluate the effect of hyperbaric oxygenation (HBO) on the expression of the genes antioxidant glutathione peroxidase 4 (Gpx4) and lactoperoxidase (Lpo) in the lung of mice subjected to intestinal ischemia and reperfusion (IIR). METHODS Control group (CG) in which were subjected to anesthesia, laparotomy and observation for 120 minutes; an ischemia and reperfusion group (IRG) subjected to anesthesia, laparotomy, small bowel ischemia for 60 minutes and reperfusion for 60 minutes; and three groups treated with HBO during ischemia (HBOG + I), during reperfusion (HBOG + R) and during ischemia and reperfusion (HBOG + IR). Studied 84 genes of oxidative stress by the method (RT-qPCR). Genes with expression levels three times below or above the threshold cycle were considered significantly hypoexpressed or hyperexpressed, respectively (Student's t-test p<0.05). RESULTS Gpx4 and Lpo were hiperexpressed on IRG, showing a correlation with these genes with lung oxidative stress. Treated with HBO, there was a significant reduction on genic expression on HBOG+I. CONCLUSION Hyperbaric oxygenation showed to be associated with decreased expression of these antioxidant genes, suggesting a beneficial effect on the mechanism of pulmonary oxidative stress whenever applied during the ischemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Murched Omar Taha
- Division of Surgical Techniques and Experimental Surgery, Department of Surgery, Universidade Federal de São Paulo, Brazil
| | - Djalma José Fagundes
- Division of Surgical Techniques and Experimental Surgery, Department of Surgery, UNIFESP, Sao Paulo, SP, Brazil
| |
Collapse
|
6
|
Oliva J. Proteasome and Organs Ischemia-Reperfusion Injury. Int J Mol Sci 2017; 19:ijms19010106. [PMID: 29301204 PMCID: PMC5796056 DOI: 10.3390/ijms19010106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/12/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
The treatment of organ failure on patients requires the transplantation of functional organs, from donors. Over time, the methodology of transplantation was improved by the development of organ preservation solutions. The storage of organs in preservation solutions is followed by the ischemia of the organ, resulting in a shortage of oxygen and nutrients, which damage the tissues. When the organ is ready for the transplantation, the reperfusion of the organ induces an increase of the oxidative stress, endoplasmic reticulum stress, and inflammation which causes tissue damage, resulting in a decrease of the transplantation success. However, the addition of proteasome inhibitor in the preservation solution alleviated the injuries due to the ischemia-reperfusion process. The proteasome is a protein structure involved in the regulation the inflammation and the clearance of damaged proteins. The goal of this review is to summarize the role of the proteasome and pharmacological compounds that regulate the proteasome in protecting the organs from the ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Joan Oliva
- Department of Medicine, LA BioMed at Harbor UCLA Medical Center, Torrance, CA 90502, USA.
| |
Collapse
|
7
|
Taha MO, de Oliveira JV, Dias Borges M, de Lucca Melo F, Gualtieri FG, E Silva Aidar AL, Pacheco RL, de Melo Alexandre E Silva T, Klajner RK, Iuamoto LR, Munhoz Torres L, Morais Mendes de Paula BJ, de Campos K, Oliveira-Junior IS, Fagundes DJ. L-Arginine Modulates Intestinal Inflammation in Rats Submitted to Mesenteric Ischemia-Reperfusion Injury. Transplant Proc 2017; 48:512-5. [PMID: 27109989 DOI: 10.1016/j.transproceed.2015.12.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/30/2015] [Accepted: 12/29/2015] [Indexed: 10/21/2022]
Abstract
BACKGROUND The goal of this study was to investigate whether exogenous offer of L-arginine (LARG) modulates the gene expression of intestinal dysfunction caused by ischemia and reperfusion. METHODS Eighteen Wistar-EPM1 male rats (250-300 g) were anesthetized and subjected to laparotomy. The superior mesenteric vessels were exposed, and the rats were randomized into 3 groups (n = 6): the control group (CG), with no superior mesenteric artery interruption; the ischemia/reperfusion group (IRG), with 60 minutes of ischemia and 120 minutes of reperfusion and saline injections; and the L-arginine group (IRG + LARG), with L-arginine injected in the femoral vein 5 minutes before ischemia, 5 minutes after reperfusion, and after 55 minutes of reperfusion. The total RNA was extracted and purified from samples of the small intestine. The concentration of each total RNA sample was determined by using spectrophotometry. The first-strand complementary DNA (cDNA) was synthesized in equal amounts of cDNA and the Master Mix SYBR Green qPCR Mastermix (SABiosciences, a Qiagen Company, Frederick, Md). Amounts of cDNA and Master Mix SYBR Green qPCR Mastermix were distributed to each well of the polymerase chain reaction microarray plate containing the predispensed gene-specific primer sets for Bax and Bcl2. Each sample was evaluated in triplicate, and the Student t test was applied to validate the homogeneity of each gene expression reaction (P < .05). RESULTS The gene expression of Bax in IRG (+1.48) was significantly higher than in IRG-LARG (+9.69); the expression of Bcl2L1 in IRG (+1.01) was significantly higher than IRG-LARG (+22.89). CONCLUSIONS The apoptotic cell pathway of 2 protagonists showed that LARG improves the gene expression of anti-apoptotic Bcl2l1 (Bcl2-like 1) more than the pro-apoptotic Bax (Bcl2-associated X protein).
Collapse
Affiliation(s)
- M O Taha
- Surgical Techniques and Experimental Surgery Division, Surgery Department, São Paulo Federal University-UNIFESP, São Paulo-SP, Brazil
| | - J V de Oliveira
- Surgical Techniques and Experimental Surgery Division, Surgery Department, São Paulo Federal University-UNIFESP, São Paulo-SP, Brazil
| | - M Dias Borges
- Surgical Techniques and Experimental Surgery Division, Surgery Department, São Paulo Federal University-UNIFESP, São Paulo-SP, Brazil
| | - F de Lucca Melo
- Surgical Techniques and Experimental Surgery Division, Surgery Department, São Paulo Federal University-UNIFESP, São Paulo-SP, Brazil
| | - F G Gualtieri
- Surgical Techniques and Experimental Surgery Division, Surgery Department, São Paulo Federal University-UNIFESP, São Paulo-SP, Brazil
| | - A L E Silva Aidar
- Surgical Techniques and Experimental Surgery Division, Surgery Department, São Paulo Federal University-UNIFESP, São Paulo-SP, Brazil
| | - R L Pacheco
- Surgical Techniques and Experimental Surgery Division, Surgery Department, São Paulo Federal University-UNIFESP, São Paulo-SP, Brazil
| | | | - R K Klajner
- Universitary Center São Camilo, São Paulo-SP, Brazil
| | - L R Iuamoto
- University of São Paulo Medical School-USP, São Paulo-SP, Brazil
| | | | | | - K de Campos
- Medical School of University of Mogi, Mogi das Cruzes-SP, Brazil
| | - I S Oliveira-Junior
- Surgical Techniques and Experimental Surgery Division, Surgery Department, São Paulo Federal University-UNIFESP, São Paulo-SP, Brazil
| | - D J Fagundes
- Surgical Techniques and Experimental Surgery Division, Surgery Department, São Paulo Federal University-UNIFESP, São Paulo-SP, Brazil.
| |
Collapse
|
8
|
Luo R, Li L, Du X, Shi M, Zhou C, Wang C, Liao G, Lu Y, Zhong Z, Cheng J, Chen Y. Gene expression profile of vascular ischemia-reperfusion injury in rhesus monkeys. Gene 2016; 576:753-62. [DOI: 10.1016/j.gene.2015.10.073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
|
9
|
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6:524-551. [PMID: 26484802 PMCID: PMC4625011 DOI: 10.1016/j.redox.2015.08.020] [Citation(s) in RCA: 936] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022] Open
Abstract
Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue. Reperfusion injury is implicated in a variety of human diseases and disorders. Evidence implicating ROS in reperfusion injury continues to grow. Several enzymes are candidate sources of ROS in post-ischemic tissue. Inter-enzymatic ROS-dependent signaling enhances the oxidative stress caused by I/R. .
Collapse
Affiliation(s)
- D Neil Granger
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, United States.
| | - Peter R Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|