1
|
Forbes J, Jackson GR, Knapik DM, Childers JT, Donley C, Coutelle N, Sabesan VJ. The use of amniotic tissue-derived products in orthopedic surgery: A narrative review. Injury 2024; 55:111901. [PMID: 39341049 DOI: 10.1016/j.injury.2024.111901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/25/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Amniotic-derived products have been used for decades in various medical subspecialties and have proven to be a safe method of allograft tissue transplantation. These products have shown promising preclinical and early clinical results in the treatment of tendon/ligament injuries, cartilage defects, and osteoarthritis. The therapeutic benefits of amniotic-derived products are likely due to intrinsic properties, such as their structure as an extracellular matrix and concentration of growth factors, as well as anti-inflammatory, antifibrotic, and antimicrobial molecules. We performed a narrative review, evaluating the pre-clinical and clinical use of amniotic-derived products in musculoskeletal injuries such as osteoarthritis, Achilles tendinopathy, plantar fasciitis, lateral epicondylitis, chronic stenosing tenosynovitis, and nerve, cartilage and tendon repair or reconstruction, along with fracture healing treatment. In vitro and pre-clinical studies using amniotic-derived products for orthopedic treatments have shown promising results and provide the foundation for further human trials to be conducted. With the rise of commercially available biologics, incorporating amniotic products into orthopedic practice is becoming more accessible, while further studies investigating long-term outcomes and potential adverse events are necessary.
Collapse
Affiliation(s)
- Jessica Forbes
- Charles E. Schmidt College of Medicine Florida Atlantic University, Boca Raton, FL, USA
| | - Garrett R Jackson
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO, 65211, USA.
| | - Derrick M Knapik
- Department of Orthopaedic Surgery, Washington University and Barnes-Jewish Orthopedic Center, Chesterfield, MO, USA
| | - Justin T Childers
- Charles E. Schmidt College of Medicine Florida Atlantic University, Boca Raton, FL, USA
| | - Connor Donley
- JFK/University of Miami Miller School of Medicine Department of Orthopedics, Lake Worth, FL, USA
| | - Nino Coutelle
- JFK/University of Miami Miller School of Medicine Department of Orthopedics, Lake Worth, FL, USA
| | - Vani J Sabesan
- Orthopedic Center of Palm Beach County, Palm Beach, FL, USA
| |
Collapse
|
2
|
Nicodemo MC, Arisawa EALS, Sant'anna LB, Lopes-Martins R. Photobiomodulation and amniotic membrane for treat tendon injury in rats. AN ACAD BRAS CIENC 2024; 96:e20231139. [PMID: 39140521 DOI: 10.1590/0001-3765202420231139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/19/2024] [Indexed: 08/15/2024] Open
Abstract
Tendons, complex fibrous structures, are subjected to great tensions, which can give rise to the so-called tendinopathies. This study aimed to evaluate photobiomodulation and human Amniotic Membrane applied as single or combined therapies to treat induced Achilles tendon lesions. Seventy-five rats were divided into five groups (n=15): C- control Sham surgery; I- tendon injury; LA- tendon injury treated with photobiomodulation; AM- tendon injury treated with Amniotic Membrane; LAM- tendon injury + photobiomodulation and Amniotic Membrane, subdivided into three groups (n=5) with analysis at 3, 7, and 14 days. The tendon injuries were made with a 20 g weight released from a mini guillotine onto the ankle in dorsiflexion. AM and LAM groups received an Amniotic Membrane fragment while LA and LAM groups received transcutaneous photobiomodulation, using a 660 nm wavelength laser. The inflammatory cells showed statistical differences between groups C and I (p<0.05), I and AM (p<0.01), I and LA (p<0.05), and I and LAM (p<0.01). Both photobiomodulation and Amniotic Membrane were shown to enhance tendon repair, and the association of photobiomodulation plus Amniotic Membrane was the most effective treatment. We conclude that the association of photobiomodulation plus Amniotic Membrane was effective in accelerating and improving the tendon regeneration process.
Collapse
Affiliation(s)
- Mariana C Nicodemo
- Universidade do Vale do Paraíba - UNIVAP, Laboratório de Bioestimulação e Reparo Tecidual, Av. Shishima Hifumi, 2911, Urbanova, 12244-000 São José dos Campos, SP, Brazil
| | - Emilia Angela L S Arisawa
- Universidade do Vale do Paraíba - UNIVAP, Laboratório de Bioestimulação e Reparo Tecidual, Av. Shishima Hifumi, 2911, Urbanova, 12244-000 São José dos Campos, SP, Brazil
| | - Luciana B Sant'anna
- Universidade do Vale do Paraíba - UNIVAP, Laboratório de Histologia e Terapia Regenerativa, Av. Shishima Hifumi, 2911, Urbanova, 12244-000 São José dos Campos, SP, Brazil
| | - Rodrigo Lopes-Martins
- Universidade Brasil, Programa de Pós-Graduação em Bioengenharia, Rua Carolina Fonseca, 584, Itaquera, 08230-030 São Paulo, SP, Brazil
| |
Collapse
|
3
|
Wang JT, Li CB, Zhang JT, An MY, Zhao G, Liu YJ. Interposition of acellular amniotic membrane at the tendon to bone interface would be better for healing than overlaying above the tendon to bone junction in the repair of rotator cuff injury. Chin J Traumatol 2024:S1008-1275(24)00039-7. [PMID: 38688817 DOI: 10.1016/j.cjtee.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
PURPOSE The retear rate of rotator cuff (RC) after surgery is high, and the rapid and functional enthesis regeneration remains a challenge. Whether acellular amniotic membrane (AAM) helps to promote the healing of tendon to bone and which treatment is better are both unclear. The study aims to investigate the effect of AAM on the healing of RC and the best treatment for RC repair. METHODS Thirty-three Sprague Dawley rats underwent RC transection and repair using microsurgical techniques and were randomly divided into the suturing repair only (SRO) group (n = 11), the AAM overlaying (AOL) group (n = 11), and the AAM interposition (AIP) group (n = 11), respectively. Rats were sacrificed at 4 weeks, then examined by subsequent micro-CT, and evaluated by histologic and biomechanical tests. The statistical analyses of one-way ANOVA or Kruskal-Wallis test were performed using with SPSS 23.0. A p < 0.05 was considered a significant difference. RESULTS AAM being intervened between tendon and bone (AIP group) or overlaid over tendon to bone junction (AOL group) in a rat model, promoted enthesis regeneration, increased new bone and cartilage generation, and improved collagen arrangement and biomechanical properties in comparison with suturing repair only (SRO group) (AOL vs. SRO, p < 0.001, p = 0.004, p = 0.003; AIP vs. SRO, p < 0.001, p < 0.001, p < 0.001). Compared with the AOL group, the AIP group had better results in micro-CT evaluation, histological score, and biomechanical testing (p = 0 0.039, p = 0.011, p = 0.003, respectively). CONCLUSION In the RC repair model, AAM enhanced regeneration of the tendon to bone junction. This regeneration was more effective when the AAM was intervened at the tendon to bone interface than overlaid above the tendon to bone junction.
Collapse
Affiliation(s)
- Jiang-Tao Wang
- Chinese PLA Medical School, Beijing, 100039, China; Department of Orthopedics, The 980th Hospital of PLA Joint Logistics Support Forces, Shijiazhuang, 050082, China
| | - Chun-Bao Li
- Department of Orthopedics, The Forth Medical Center of Chinese PLA General Hospital, Beijing, 100089, China
| | | | - Ming-Yang An
- Chinese PLA Medical School, Beijing, 100039, China
| | - Gang Zhao
- Chinese PLA Medical School, Beijing, 100039, China
| | - Yu-Jie Liu
- Department of Orthopedics, The Forth Medical Center of Chinese PLA General Hospital, Beijing, 100089, China; Department of Orthopedics, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, Hainan, China.
| |
Collapse
|
4
|
Li D, Wang G, Li J, Yan L, Liu H, Jiu J, Li X, Li JJ, Wang B. Biomaterials for Tissue-Engineered Treatment of Tendinopathy in Animal Models: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:387-413. [PMID: 36792921 DOI: 10.1089/ten.teb.2022.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
To conduct a systematic review of studies reporting the treatment of tendon injury using biomaterials in animal models. A systematic search was conducted to retrieve studies involving animal models of tendon repair using biomaterials, in PubMed (database construction to August 2022) and Ovid-Embase (1946 to August 2022). Data related to tendon repair with biomaterials were extracted by two researchers, respectively. Risk of bias was assessed following the Cochrane Handbook for Systematic Reviews of Interventions. A statistical analysis was performed based on the classification of tendon repair biomaterials included in our study. A total of 8413 articles were retrieved, with 78 studies included in our analysis. For tendon repair in animal models using biomaterials, the most commonly seen characteristics were as follows: naturally derived biomaterials, rabbits and rats as animal models, surgery as the injury model, and the Achilles tendon as the injury site. The histology and biomechanical recovery of tendon injury following repair are affected by different biomaterials. Studies of tendon repair in animal models indicate that biomaterials can significantly improve repair outcomes, including tendon structure and biomechanics. Among effective biomaterial strategies are the use of new composites and incorporation of cells or growth factors into the material, both of which provide obvious benefits for tendon healing. More high-quality preclinical studies are required to encourage the translation of biomaterials into clinical practice for tendon repair.
Collapse
Affiliation(s)
- Dijun Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| | - Guishan Wang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Lei Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haifeng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwei Jiu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoke Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedic Surgery, Shanxi Medical University Second Affiliated Hospital, Taiyuan, China
| |
Collapse
|
5
|
Huang L, Chen L, Chen H, Wang M, Jin L, Zhou S, Gao L, Li R, Li Q, Wang H, Zhang C, Wang J. Biomimetic Scaffolds for Tendon Tissue Regeneration. Biomimetics (Basel) 2023; 8:246. [PMID: 37366841 DOI: 10.3390/biomimetics8020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Tendon tissue connects muscle to bone and plays crucial roles in stress transfer. Tendon injury remains a significant clinical challenge due to its complicated biological structure and poor self-healing capacity. The treatments for tendon injury have advanced significantly with the development of technology, including the use of sophisticated biomaterials, bioactive growth factors, and numerous stem cells. Among these, biomaterials that the mimic extracellular matrix (ECM) of tendon tissue would provide a resembling microenvironment to improve efficacy in tendon repair and regeneration. In this review, we will begin with a description of the constituents and structural features of tendon tissue, followed by a focus on the available biomimetic scaffolds of natural or synthetic origin for tendon tissue engineering. Finally, we will discuss novel strategies and present challenges in tendon regeneration and repair.
Collapse
Affiliation(s)
- Lvxing Huang
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Le Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hengyi Chen
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Manju Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310000, China
| | - Letian Jin
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Shenghai Zhou
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Lexin Gao
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Ruwei Li
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Quan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hanchang Wang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Junjuan Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
6
|
Lange-Consiglio A, Gaspari G, Funghi F, Capra E, Cretich M, Frigerio R, Bosi G, Cremonesi F. Amniotic Mesenchymal-Derived Extracellular Vesicles and Their Role in the Prevention of Persistent Post-Breeding Induced Endometritis. Int J Mol Sci 2023; 24:ijms24065166. [PMID: 36982240 PMCID: PMC10049450 DOI: 10.3390/ijms24065166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Persistent post-breeding induced endometritis (PPBIE) is considered a major cause of subfertility in mares. It consists of persistent or delayed uterine inflammation in susceptible mares. There are many options for the treatment of PPBIE, but in this study, a novel approach aimed at preventing the onset of PPBIE was investigated. Stallion semen was supplemented with extracellular vesicles derived from amniotic mesenchymal stromal cells (AMSC-EVs) at the time of insemination to prevent or limit the development of PPBIE. Before use in mares, a dose–response curve was produced to evaluate the effect of AMSC-EVs on spermatozoa, and an optimal concentration of 400 × 106 EVs with 10 × 106 spermatozoa/mL was identified. At this concentration, sperm mobility parameters were not negatively affected. Sixteen susceptible mares were enrolled and inseminated with semen (n = 8; control group) or with semen supplemented with EVs (n = 8; EV group). The supplementation of AMSC-EVs to semen resulted in a reduction in polymorphonuclear neutrophil (PMN) infiltration as well as intrauterine fluid accumulation (IUF; p < 0.05). There was a significant reduction in intrauterine cytokine levels (p < 0.05) for TNF-α and IL-6 and an increase in anti-inflammatory IL-10 in mares in the EV group, suggesting successful modulation of the post-insemination inflammatory response. This procedure may be useful for mares susceptible to PPBIE.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy
- Correspondence: ; Tel.: +39-025-033-4150
| | - Giulia Gaspari
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy
| | | | - Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), 26900 Lodi, Italy
| | - Marina Cretich
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy
| | - Roberto Frigerio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Consiglio Nazionale delle Ricerche (CNR), 20133 Milan, Italy
| | - Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy
| | - Fausto Cremonesi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell’Università, 6, 26900 Lodi, Italy
| |
Collapse
|
7
|
Fitriani N, Wilar G, Narsa AC, Mohammed AFA, Wathoni N. Application of Amniotic Membrane in Skin Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030748. [PMID: 36986608 PMCID: PMC10053812 DOI: 10.3390/pharmaceutics15030748] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Amniotic membrane (AM) is an avascular structure composed of three different layers, which contain collagen, extracellular matrix, and biologically active cells (stem cells). Collagen, a naturally occurring matrix polymer, provides the structural matrix/strength of the amniotic membrane. Tissue remodeling is regulated by growth factors, cytokines, chemokines, and other regulatory molecules produced by endogenous cells within AM. Therefore, AM is considered an attractive skin-regenerating agent. This review discusses the application of AM in skin regeneration, including its preparation for application to the skin and its mechanisms of therapeutic healing in the skin. This review involved collecting research articles that have been published in several databases, including Google Scholar, PubMed, Science Direct, and Scopus. The search was conducted by using the keywords ‘amniotic membrane skin’, ‘amniotic membrane wound healing’, ‘amniotic membrane burn’, ‘amniotic membrane urethral defects’, ‘amniotic membrane junctional epidermolysis bullosa’, and ‘amniotic membrane calciphylaxis’. Ultimately, 87 articles are discussed in this review. Overall, AM has various activities that help in the regeneration and repair of damaged skin.
Collapse
Affiliation(s)
- Nurul Fitriani
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Angga Cipta Narsa
- Pharmaceutical Research and Development Laboratory of FARMAKA TROPIS, Faculty of Pharmacy, Universitas Mulawarman, Samarinda 75119, Indonesia
| | - Ahmed F. A. Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Correspondence: ; Tel.: +62-22-842-888-888
| |
Collapse
|
8
|
Manti N, Guvercin Y, Mercantepe T, Tumkaya L, Balik MS. Clinical and Histologic Evaluation of Partial Achilles Tendon Injury Repair with Amniotic Membrane in Rats. J Am Podiatr Med Assoc 2022; 112:20-055. [PMID: 35324463 DOI: 10.7547/20-055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Adhesions after tendinopathy in individuals who perform physical work and those physically active in middle age are a challenging problem for orthopedic surgeons. We evaluated the effects of human-derivated amniotic membrane on tendon healing, adhesions, angiogenesis, and the inflammatory process. METHODS Thirty-five rats were divided evenly into five groups, and the left lower extremity was used in this study. No interventions were applied to the control group (group 5). In the other groups, Achilles tendons were partially cut to the midline. Then, primary repair (group 1), amniotic membrane treatment with no repair (group 2), primary repair and amniotic membrane treatment (group 3), or secondary healing with no repair (group 4) was performed. RESULTS Use of amniotic membrane in tendon healing resulted in decreased adhesion formation and positive effects on collagen sequencing and anti-inflammatory effects. In addition, for the vascular endothelial growth factor evaluation there was no difference among the amniotic membrane repair groups, but there was an increase in vascular endothelial growth factor positivity compared with the control group. CONCLUSIONS These data show that amniotic membrane treatment can alter biological behavior and induce surface-dependent angiogenesis and can have angiogenetic effects on ischemia and inflammation.
Collapse
Affiliation(s)
- Nurettin Manti
- *Department of Orthopedics and Traumatology, Ankara City Hospital-Neurology Orthopaedic Hospital, Ankara, Turkey
| | - Yilmaz Guvercin
- †Department of Orthopedics and Traumatology, Recep Tayyip Erdoğan University Medical School, Rize, Turkey
| | - Tolga Mercantepe
- ‡Department of Histology and Embryology Recep Tayyip Erdoğan University Medical School, Rize, Turkey
| | - Levent Tumkaya
- ‡Department of Histology and Embryology Recep Tayyip Erdoğan University Medical School, Rize, Turkey
| | - Mehmet Sabri Balik
- †Department of Orthopedics and Traumatology, Recep Tayyip Erdoğan University Medical School, Rize, Turkey
| |
Collapse
|
9
|
Coutinho EST, Medeiros Neto LP, Bhattacharjee T, Arisawa EALS, Sant'Anna LB. Raman spectroscopy of healthy, injured and amniotic membrane treated rat spinal cords. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120323. [PMID: 34534772 DOI: 10.1016/j.saa.2021.120323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Spinal cord injury is a significant public health issue with high psychological and financial costs to both the family and the society. Effective treatment strategies are hence of immense value. Several reports have suggested application of amniotic membrane for treating injuries, and there is evidence that it may be used to treat spinal injuries. In this animal model study, we explore biochemical changes in amniotic membrane treated injured spinal cord with respect to untreated injured and uninjured spinal cord using Raman spectroscopy. Multivariate statistical analysis is able to classify control, untreated, and treated with 92%, 87%, and 80% efficiency, respectively; suggesting unique biochemical changes in each group. Such studies may lead to development of minimally invasive methodologies for spinal cord injury treatment monitoring.
Collapse
Affiliation(s)
- Elisabeth Salmagi Teixeira Coutinho
- Laboratory of Histology and Regenerative Therapy, Institute for Research and Development (IP&D), Universidade do Vale do Paraíba (UniVap), Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, 12244-000 São Paulo (SP), Brazil
| | - Lázaro Pinto Medeiros Neto
- Scientific and Technological Institute of Brazil University, Universidade Brasil, Rua Carolina Fonseca, 584, Itaquera, São Paulo, 08230-030 São Paulo (SP), Brazil
| | - Tanmoy Bhattacharjee
- Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand
| | - Emilia Angela Lo Schiavo Arisawa
- Laboratory of Histology and Regenerative Therapy, Institute for Research and Development (IP&D), Universidade do Vale do Paraíba (UniVap), Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, 12244-000 São Paulo (SP), Brazil.
| | - Luciana Barros Sant'Anna
- Laboratory of Histology and Regenerative Therapy, Institute for Research and Development (IP&D), Universidade do Vale do Paraíba (UniVap), Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, 12244-000 São Paulo (SP), Brazil
| |
Collapse
|
10
|
Ragni E, Papait A, Perucca Orfei C, Silini AR, Colombini A, Viganò M, Libonati F, Parolini O, de Girolamo L. Amniotic membrane-mesenchymal stromal cells secreted factors and extracellular vesicle-miRNAs: Anti-inflammatory and regenerative features for musculoskeletal tissues. Stem Cells Transl Med 2021; 10:1044-1062. [PMID: 33656805 PMCID: PMC8235131 DOI: 10.1002/sctm.20-0390] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/17/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Human amniotic membrane‐derived mesenchymal stromal cells (hAMSCs) are easily obtained in large quantities and free from ethical concerns. Promising therapeutic results for both hAMSCs and their secreted factors (secretome) were described by several in vitro and preclinical studies, often for treatment of orthopedic disorders such as osteoarthritis (OA) and tendinopathy. For clinical translation of the hAMSC secretome as cell‐free therapy, a detailed characterization of hAMSC‐secreted factors is mandatory. Herein, we tested the presence of 200 secreted factors and 754 miRNAs in extracellular vesicles (EVs). Thirty‐seven cytokines/chemokines were identified at varying abundance, some of which involved in both chemotaxis and homeostasis of inflammatory cells and in positive remodeling of extracellular matrix, often damaged in tendinopathy and OA. We also found 336 EV‐miRNAs, 51 of which accounted for more than 95% of the genetic message. A focused analysis based on miRNAs related to OA and tendinopathy showed that most abundant EV‐miRNAs are teno‐ and chondro‐protective, able to induce M2 macrophage polarization, inhibit inflammatory T cells, and promote Treg. Functional analysis on IL‐1β treated tenocytes and chondrocytes resulted in downregulation of inflammation‐associated genes. Overall, presence of key regulatory molecules and miRNAs explain the promising therapeutic results of hAMSCs and their secretome for treatment of musculoskeletal conditions and are a groundwork for similar studies in other pathologies. Furthermore, identified molecules will pave the way for future studies aimed at more sharply predicting disease‐targeted clinical efficacy, as well as setting up potency and release assays to fingerprint clinical‐grade batches of whole secretome or purified components.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.,Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Carlotta Perucca Orfei
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Alessandra Colombini
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Marco Viganò
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Francesca Libonati
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all'Ortopedia, Milan, Italy
| |
Collapse
|
11
|
Abstract
The management of Achilles tendon rupture continues to be controversial in the everyday athlete; however, there is strong evidence indicating that surgical intervention is preferred in elite athletes due to the return of greater strength and peak torque. We review the published literature, as well as our operative technique and post-operative protocol in the management of Achilles tendon injuries in elite athletes.
Collapse
|
12
|
miRNA Reference Genes in Extracellular Vesicles Released from Amniotic Membrane-Derived Mesenchymal Stromal Cells. Pharmaceutics 2020; 12:pharmaceutics12040347. [PMID: 32290510 PMCID: PMC7238137 DOI: 10.3390/pharmaceutics12040347] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Human amniotic membrane and amniotic membrane-derived mesenchymal stromal cells (hAMSCs) have produced promising results in regenerative medicine, especially for the treatment of inflammatory-based diseases and for different injuries including those in the orthopedic field such as tendon disorders. hAMSCs have been proposed to exert their anti-inflammatory and healing potential via secreted factors, both free and conveyed within extracellular vesicles (EVs). In particular, EV miRNAs are considered privileged players due to their impact on target cells and tissues, and their future use as therapeutic molecules is being intensely investigated. In this view, EV-miRNA quantification in either research or future clinical products has emerged as a crucial paradigm, although, to date, largely unsolved due to lack of reliable reference genes (RGs). In this study, a panel of thirteen putative miRNA RGs (let-7a-5p, miR-16-5p, miR-22-5p, miR-23a-3p, miR-26a-5p, miR-29a-5p, miR-101-3p, miR-103a-3p, miR-221-3p, miR-423-5p, miR-425-5p, miR-660-5p and U6 snRNA) that were identified in different EV types was assessed in hAMSC-EVs. A validated experimental pipeline was followed, sifting the output of four largely accepted algorithms for RG prediction (geNorm, NormFinder, BestKeeper and ΔCt method). Out of nine RGs constitutively expressed across all EV isolates, miR-101-3p and miR-22-5p resulted in the most stable RGs, whereas miR-423-5p and U6 snRNA performed poorly. miR-22-5p was also previously reported to be a reliable RG in adipose-derived MSC-EVs, suggesting its suitability across samples isolated from different MSC types. Further, to shed light on the impact of incorrect RG choice, the level of five tendon-related miRNAs (miR-29a-3p, miR-135a-5p, miR-146a-5p, miR-337-3p, let-7d-5p) was compared among hAMSC-EVs isolates. The use of miR-423-5p and U6 snRNA did not allow a correct quantification of miRNA incorporation in EVs, leading to less accurate fingerprinting and, if used for potency prediction, misleading indication of the most appropriate clinical batch. These results emphasize the crucial importance of RG choice for EV-miRNAs in hAMSCs studies and contribute to the identification of reliable RGs such as miR-101-3p and miR-22-5p to be validated in other MSC-EVs related fields.
Collapse
|
13
|
Nascimento LDES, Nicolau RA, Maia Filho ALM, Santos JZLV, Fonseca KM, Ferreira DCL, Sousa RCD, Viana VGF, Carvalho LFM, Figueredo-Silva J. Effect of norbixin-based poly(hydroxybutyrate) membranes on the tendon repair process after tenotomy in rats. Acta Cir Bras 2020; 34:e201901101. [PMID: 31939594 PMCID: PMC6958576 DOI: 10.1590/s0102-865020190110000001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/13/2019] [Indexed: 12/28/2022] Open
Abstract
Purpose: To determine the efficacy of norbixin-based poly(hydroxybutyrate) (PHB) membranes for Achilles tendon repair. Methods: Thirty rats were submitted to total tenotomy surgery of the right Achilles tendon and divided into two groups (control and membrane; n = 15 each), which were further subdivided into three subgroups (days 7, 14, and 21; n = 5 each). Samples were analyzed histologically. Results: Histological analysis showed a significant reduction in inflammatory infiltrates on days 7, 14 (p < 0.0001 for both), and 21 (p = 0.0004) in the membrane group compared to that in the control group. There was also a significant decrease in the number of fibroblasts in the control group on days 7, 14 (p < 0.0001), and 21 (p = 0.0032). Further, an increase in type I collagen deposition was observed in the membrane group compared to that in the control group on days 7 (p = 0.0133) and 14 (p = 0.0107). Conclusion: Treatment with norbixin-based PHB membranes reduces the inflammatory response, increases fibroblast proliferation, and improves collagen production in the tendon repair region, especially between days 7 and 14.
Collapse
|
14
|
Lim WL, Liau LL, Ng MH, Chowdhury SR, Law JX. Current Progress in Tendon and Ligament Tissue Engineering. Tissue Eng Regen Med 2019; 16:549-571. [PMID: 31824819 PMCID: PMC6879704 DOI: 10.1007/s13770-019-00196-w] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tendon and ligament injuries accounted for 30% of all musculoskeletal consultations with 4 million new incidences worldwide each year and thus imposed a significant burden to the society and the economy. Damaged tendon and ligament can severely affect the normal body movement and might lead to many complications if not treated promptly and adequately. Current conventional treatment through surgical repair and tissue graft are ineffective with a high rate of recurrence. Methods In this review, we first discussed the anatomy, physiology and pathophysiology of tendon and ligament injuries and its current treatment. Secondly, we explored the current role of tendon and ligament tissue engineering, describing its recent advances. After that, we also described stem cell and cell secreted product approaches in tendon and ligament injuries. Lastly, we examined the role of the bioreactor and mechanical loading in in vitro maturation of engineered tendon and ligament. Results Tissue engineering offers various alternative ways of treatment from biological tissue constructs to stem cell therapy and cell secreted products. Bioreactor with mechanical stimulation is instrumental in preparing mature engineered tendon and ligament substitutes in vitro. Conclusions Tissue engineering showed great promise in replacing the damaged tendon and ligament. However, more study is needed to develop ideal engineered tendon and ligament.
Collapse
Affiliation(s)
- Wei Lee Lim
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Ling Ling Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, JalanYaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Zhang D, Yan K, Zhou J, Xu T, Xu M, Lin J, Bai J, Ge G, Hu D, Si W, Hao Y, Geng D. Myogenic differentiation of human amniotic mesenchymal cells and its tissue repair capacity on volumetric muscle loss. J Tissue Eng 2019; 10:2041731419887100. [PMID: 31762985 PMCID: PMC6851610 DOI: 10.1177/2041731419887100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022] Open
Abstract
Stem cell-based tissue engineering therapy is the most promising method for treating volumetric muscle loss. Human amniotic mesenchymal cells possess characteristics similar to those of embryonic stem cells. In this study, we verified the stem cell characteristics of human amniotic mesenchymal cells by the flow cytometry analysis, and osteogenic and adipogenic differentiation. Through induction with the DNA demethylating agent 5-azacytidine, human amniotic mesenchymal cells can undergo myogenic differentiation and express skeletal muscle cell-specific markers such as desmin and MyoD. The Wnt/β-catenin signaling pathway also plays an important role. After 5-azacytidine-induced human amniotic mesenchymal cells were implanted into rat tibialis anterior muscle with volumetric muscle loss, we observed increased angiogenesis and improved local tissue repair. We believe that human amniotic mesenchymal cells can serve as a potential source of cells for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Di Zhang
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Kai Yan
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Jing Zhou
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Tianpeng Xu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Menglei Xu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Jiayi Lin
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Dan Hu
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Weibing Si
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
16
|
Mamede KM, Sant'anna LB. Antifibrotic effects of total or partial application of amniotic membrane in hepatic fibrosis. AN ACAD BRAS CIENC 2019; 91:e20190220. [PMID: 31531535 DOI: 10.1590/0001-3765201920190220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022] Open
Abstract
Liver fibrosis is the final common pathway of chronic liver diseases, having cirrhosis as a possible progression, which has liver transplantation as the only effective treatment. Human amniotic membrane represents a potential strategy as a therapy for liver fibrosis, due to its anti-inflammatory, anti-fibrotic and immunomodulatory properties. The aim of this study was to evaluate amniotic membrane effects as a treatment for hepatic fibrosis induced in rats by bile duct ligation (BDL), verifying alterations between two different forms of amniotic membrane application, around all the lobes of the liver and around only one lobe of the liver. Two weeks after inducing fibrosis, an amniotic membrane fragment was applied to the surface of the liver, covering it either totally or partially. Four weeks later, the animals were euthanized and liver samples were collected. Histopathological and quantitative analyses demonstrated fibrosis severity decrease and an extremely significant reduction in the deposition of collagen in the groups treated with amniotic membrane, particularly when the amniotic membrane was applied in only one liver lobe. It is concluded that the amniotic membrane acted on the repair of liver fibrosis in both modes of application, with the application of the amniotic membrane around only one hepatic lobe being more effective in reducing the severity / extent of fibrosis.
Collapse
Affiliation(s)
- Karina M Mamede
- Laboratório de Histologia e Terapia Regenerativa, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, Campus Urbanova, Av. Shishima Hifumi, 2911, Urbanova, 12244-000 São José dos Campos, SP, Brazil
| | - Luciana B Sant'anna
- Laboratório de Histologia e Terapia Regenerativa, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, Campus Urbanova, Av. Shishima Hifumi, 2911, Urbanova, 12244-000 São José dos Campos, SP, Brazil
| |
Collapse
|
17
|
Ackley JF, Kolosky M, Gurin D, Hampton R, Masin R, Krahe D. Cryopreserved amniotic membrane and umbilical cord particulate matrix for partial rotator cuff tears: A case series. Medicine (Baltimore) 2019; 98:e16569. [PMID: 31348285 PMCID: PMC6709267 DOI: 10.1097/md.0000000000016569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Amniotic membrane (AM) and umbilical cord (UC) are well known to have anti-inflammatory properties and have been shown to promote healing in various orthopedic indications. This study investigated whether intra-articular injection of AM/UC particulate matrix promotes healing of partial rotator cuff tears (RCTs).A case series was performed on 10 patients that received injection of 50 mg AM/UC for partial RCTs that were refractory to conservative treatment. Outcomes included Penn Shoulder Score (PSS) questionnaire, range of motion examination, and magnetic resonance imaging (MRI) analysis before and at 6 months. Final MRI analysis was performed by a musculoskeletal radiologist in a blinded fashion.Average PSS score (out of 100) increased from 46.8 ± 23.7 at baseline to 82.0 ± 19.1 at 6 months. The average PSS sub-scores of pain, satisfaction, and function increased 78.4%, 37.1%, and 82.3% from baseline, respectively. The subject's range of motion was 77.9% at baseline and increased to 99.9% at 6-months. Follow-up MRI scans did not demonstrate any significant change in RCT size. No adverse events were noted.This small case series provides preliminary data for use of cryopreserved AM/UC particulate matrix in patients with refractory partial RCTs.
Collapse
Affiliation(s)
- J Freeland Ackley
- Twinsburg Family Health and Surgery Center, Twinsburg, OH
- Southwest Sports Medicine, Waco, TX
| | | | - Danielle Gurin
- Twinsburg Family Health and Surgery Center, Twinsburg, OH
| | - Robert Hampton
- Twinsburg Family Health and Surgery Center, Twinsburg, OH
| | - Richard Masin
- Twinsburg Family Health and Surgery Center, Twinsburg, OH
| | - David Krahe
- Twinsburg Family Health and Surgery Center, Twinsburg, OH
| |
Collapse
|
18
|
McQuilling JP, Kimmerling KA, Staples MC, Mowry KC. Evaluation of two distinct placental-derived membranes and their effect on tenocyte responses in vitro. J Tissue Eng Regen Med 2019; 13:1316-1330. [PMID: 31062484 PMCID: PMC6771722 DOI: 10.1002/term.2876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/05/2019] [Accepted: 04/29/2019] [Indexed: 11/10/2022]
Abstract
Tendon healing is a complex, multiphase process that results in increased scar tissue formation, leading to weaker tendons. The purpose of this study was to evaluate the response of tenocytes to both hypothermically stored amniotic membrane (HSAM) and dehydrated amnion/chorion membrane (dACM). Composition and growth factor release from HSAM and dACM were evaluated using proteomics microarrays. HSAM and dACM releasate was used to assess tenocyte proliferation, migration, gene expression, extracellular matrix (ECM) protein deposition, and response to inflammation. Additionally, tenocyte-ECM interactions were evaluated. HSAM and dACM contain and release growth factors relevant to tendon healing, including insulin-like growth factor I, platelet-derived growth factor, and basic fibroblast growth factor. Both dACM and HSAM promoted increased tenocyte proliferation and migration; tenocytes treated with dACM proliferated more robustly, whereas treatment with HSAM resulted in higher migration. Both dACM and HSAM resulted in altered ECM gene expression; dACM grafts alone resulted in increases in collagen deposition. Furthermore, both allografts resulted in altered tenocyte responses to inflammation with reduced transforming growth factor beta levels. Additionally, dACM treatment resulted in increased expression and production of matrix metalloprotease-1 (MMP-1), whereas HSAM treatment resulted in decreased production of MMP-1. Tenocytes migrated into and remodeled HSAM only. These results indicate that both grafts have properties that support tendon healing; however, the results presented here suggest that the responses to each type of graft may be different. Due to the complex environment during tendon repair, additional work is needed to evaluate these effects using in vivo models.
Collapse
Affiliation(s)
| | | | | | - Katie C Mowry
- Research and Development, Organogenesis, Birmingham, Alabama
| |
Collapse
|
19
|
Campelo MBD, Santos JDAF, Maia Filho ALM, Ferreira DCL, Sant'Anna LB, Oliveira RAD, Maia LF, Arisawa EÂL. Effects of the application of the amniotic membrane in the healing process of skin wounds in rats. Acta Cir Bras 2018. [PMID: 29513813 DOI: 10.1590/s0102-865020180020000006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To evaluate the efficacy of the application of the human amniotic membrane (HAM) on the inflammatory process, fibroblast proliferation, formation of collagenand reduction of skin wound areas in rats. METHODS Thirty six rats were submitted to a surgical injury induction and divided into two groups (n = 18): group C (control) and T (treated with the HAM). The macroscopic evolution in the wound area and the histological characteristics of the skin samples were evaluated. RESULTS The regression of the wound area was greater in group T. The histological analysis revealed a significant reduction (p < 0.05) in the inflammatory infiltrate in group T at all experimental periods compared with that in the control group. Furthermore, the group T presented a significant increase in the proliferation of fibroblasts at 14 and 21 days compared with group C (p < 0.05). Regarding the deposition of mature collagen fibers, there was an increase in the replacement of type III collagen by type I collagen in group T (p < 0.05). CONCLUSION Treatment with the HAM reduced the healing time as well as the inflammatory responses, increased the proliferation of fibroblasts, and induced a higher concentration of mature collagen fibers.
Collapse
Affiliation(s)
- Mariana Barbosa Dias Campelo
- Fellow PhD degree, Postgraduate Program in Biomedical Engineering, Universidade do Vale do Paraíba (UNIVAP), Sao Jose dos Campos-SP, Brazil. Conception, design, intellectual and scientific content of the study; acquisition and interpretation of data, technical procedures, manuscript preparation
| | - Joelita de Alencar Fonseca Santos
- Fellow PhD degree, Postgraduate Program in Biomedical Engineering, UNIVAP, Sao Jose dos Campos-SP. Assistant Professor, Nursing Department, Universidade Federal do Piauí (UFPI), Teresina-PI, Brazil. Technical procedures, manuscript preparation
| | - Antonio Luiz Martins Maia Filho
- PhD, Associate Professor, Biotechnology and Biodiversity Laboratory, Universidade Estadual do Piauí (UESPI), Teresina-PI, Brazil. Technical procedures
| | | | | | | | - Leonardo Fonseca Maia
- Assistant Professor, Department of Medicine, UFPI, Teresina-PI, Brazil. Technical procedures
| | - Emilia Ângela Loschiavo Arisawa
- PhD, Biostimulation and Tissue Repair Laboratory, UNIVAP, Sao Jose dos Campos-SP, Brazil. Conception, design, intellectual and scientific content of the study; histopathological examinations; interpretation of data; critical revision
| |
Collapse
|
20
|
Farhadihosseinabadi B, Farahani M, Tayebi T, Jafari A, Biniazan F, Modaresifar K, Moravvej H, Bahrami S, Redl H, Tayebi L, Niknejad H. Amniotic membrane and its epithelial and mesenchymal stem cells as an appropriate source for skin tissue engineering and regenerative medicine. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:431-440. [PMID: 29687742 DOI: 10.1080/21691401.2018.1458730] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
One of the main goals of tissue engineering and regenerative medicine is to develop skin substitutes for treating deep dermal and full thickness wounds. In this regard, both scaffold and cell source have a fundamental role to achieve exactly the same histological and physiological analog of skin. Amnion epithelial and mesenchymal cells possess the characteristics of pluripotent stem cells which have the capability to differentiate into all three germ layers and can be obtained without any ethical concern. Amniotic cells also produce different growth factors, angio-modulatory cytokines, anti-bacterial peptides and a wide range of anti-inflammatory agents which eventually cause acceleration in wound healing. In addition, amniotic membrane matrix exhibits characteristics of an ideal scaffold and skin substitute through various types of extracellular proteins such as collagens, laminins and fibronectins which serve as an anchor for cell attachment and proliferation, a bed for cell delivery and a reservoir of drugs and growth factors involved in wound healing process. Recently, isolation of amniotic cells exosomes, surface modification and cross-linking approaches, construction of amnion based nanocomposites and impregnation of amnion with nanoparticles, construction of amnion hydrogel and micronizing process promoted its properties for tissue engineering. In this manuscript, the recent progress was reviewed which approve that amnion-derived cells and matrix have potential to be involved in skin substitutes; an enriched cell containing scaffold which has a great capability to be translated into the clinic.
Collapse
Affiliation(s)
- Behrouz Farhadihosseinabadi
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mehrdad Farahani
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Tahereh Tayebi
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Ameneh Jafari
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran.,b Department of Basic Sciences, School of Paramedical Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Felor Biniazan
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Khashayar Modaresifar
- c Department of Biomaterials, Faculty of Biomedical Engineering , Amirkabir University of Technology , Tehran , Iran
| | - Hamideh Moravvej
- d Skin Research Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Soheyl Bahrami
- e Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center , Vienna , Austria
| | - Heinz Redl
- e Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center , Vienna , Austria
| | - Lobat Tayebi
- f Department of Developmental Sciences , Marquette University School of Dentistry , Milwaukee , WI , USA
| | - Hassan Niknejad
- a Department of Pharmacology, School of Medicine , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| |
Collapse
|
21
|
Bhattacharjee TT, Nicodemo MC, Sant'Anna LB, Lo Schiavo Arisawa EA, Raniero L. Tendinopathy diagnosis and treatment monitoring using attenuated total reflectance-Fourier transform infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201700256. [PMID: 29160619 DOI: 10.1002/jbio.201700256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Tendinopathy, an important sports injury afflicting athletes and general public, is associated with huge economic losses. The currently used diagnostic tests are subjective, show moderate sensitivity and specificity; while treatment failures persist despite advances in therapy. This highlights the need for tendinopathy diagnostic and treatment monitoring tools. This study investigates tendon injury, natural healing and effect of treatment using ATR-FTIR complemented with histopathology. Control (C), injured (I) and treated (T) rat tendons were extracted 3, 7, 14 and 28 days post-injury/treatment, representing phases of healing; and subjected to hematoxylin & eosin staining as well as spectroscopy. While C showed no change, I- and T-related histological changes could be clearly observed in stained sections. ATR-FTIR spectra highlighted the biochemical changes within groups. Multivariate analysis could classify C, I and T with 75%; different days between groups with 84%; and different days within group with 65% efficiency. Results suggest that such analysis can not only identify C, I or T but also different phases of healing. Difference between I and T at different time points also suggest change in rate of healing. Further studies may help develop this technique for clinical diagnosis and treatment monitoring in future.
Collapse
Affiliation(s)
- Tanmoy T Bhattacharjee
- Laboratory of Nanosensors, Research and Development Institute (IPD), University of Paraíba Valley (UNIVAP), São Paulo, Brazil
| | - Mariana C Nicodemo
- Biostimulation and Tissue Repair Laboratory, Research and Development Institute (IPD), University of Paraíba Valley (UNIVAP), São Paulo, Brazil
| | - Luciana B Sant'Anna
- Histology and Regenerative Therapy Laboratory, Research and Development Institute (IPD), University of Paraíba Valley (UNIVAP), São Paulo, Brazil
| | - Emilia A Lo Schiavo Arisawa
- Biostimulation and Tissue Repair Laboratory, Research and Development Institute (IPD), University of Paraíba Valley (UNIVAP), São Paulo, Brazil
| | - Leandro Raniero
- Laboratory of Nanosensors, Research and Development Institute (IPD), University of Paraíba Valley (UNIVAP), São Paulo, Brazil
| |
Collapse
|
22
|
Gomes Barbato KB, de Almeida G, da Costa J, Rodriguez L, Raposo C, Dias H, Paiva R, de Oliveira LP, Carvalho J. Complete Achilles Tenotomy: A New Improved Experimental Surgical Technique in Rats. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/ojas.2018.81001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|