1
|
Berköz M, Aslan A, Yunusoğlu O, Krośniak M, Francik R. Hepatoprotective potentials of Usnea longissima Ach. and Xanthoparmelia somloensis (Gyelnik) Hale extracts in ethanol-induced liver injury. Drug Chem Toxicol 2024:1-14. [PMID: 39322224 DOI: 10.1080/01480545.2024.2407867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
In our study, the antioxidant and anti-inflammatory effects of different lichen applications were investigated in rats using an experimental ethanol toxicity model. 48 rats were used in the study and they were divided into 6 groups with 8 rats in each group. These groups were: control, ethanol (2 g/kg), ethanol + Usnea longissima Ach. (200 mg/kg), ethanol + Usnea longissima Ach. (400 mg/kg), ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (100 mg/kg) and ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (200 mg/kg). The experimental work continued for 21 days. Lichen extracts and ethanol were administered by gavage to rats divided into groups. According to the experimental protocol, the experimental animals were sacrificed and their liver tissues were isolated. Biochemical parameters in serum, histological examinations, oxidative stress and inflammation parameters both at biochemical and molecular level in liver tissues were performed. Oxidative stress and inflammatory response were increased in the liver tissue of rats treated with ethanol for 21 days, and liver functions were impaired. It was found that U. longissima and X. somloensis extracts showed good antioxidant activity and conferred protective effects against ethanol-induced oxidative stress and inflammation. This could be attributed to the presence of secondary metabolites in the extract, which act as natural antioxidants and could be responsible for increasing the defence mechanisms against free radical production induced by ethanol administration.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Ali Aslan
- Department of Pharmacology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Oruç Yunusoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
2
|
Dabanlioglu B, Suleyman B, Mammadov R, Yavuzer B, Akyuz S, Akkas O, Mokhtare B, Turumtay EA, Altuner D, Abdulkadir Coban T, Suleyman H. Effect of Usnea longissima ethyl acetate extract on acute oxidative and inflammatory lung damage from Staphylococcus aureus infection in rats. J Appl Biomed 2023; 21:200-207. [PMID: 38112459 DOI: 10.32725/jab.2023.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
The role of oxidants and proinflammatory cytokines in the pathogenesis of pneumonia caused by Staphylococcus aureus (S. aureus) has been demonstrated. The present study aims to investigate the protective effect of ethyl acetate extract (EtOAc) obtained from Usnea longissima (UL) against acute oxidative and inflammatory lung damage due to S. aureus infection in rats. Albino Wistar-type male rats were divided into three groups: Healthy (HG), S. aureus inoculated (SaG), and S. aureus inoculated + ULEtOAc administered (SUL). SaG (n = 6) and SUL (n = 6) group rats' left nostrils (excluding HG) were inoculated with 0.1 ml bacterial mixture. After 24 hours, ULEtOAc (50 mg/kg) was administered orally to the SUL group, and the same volume of normal saline was administered orally to the HG (n = 6) and SaG groups. This procedure was performed once a day for seven days. Levels of oxidant and antioxidant parameters such as malondialdehyde (MDA) and total glutathione (tGSH), as well as pro-inflammatory cytokine levels such as nuclear factor-kappa B (NF-κB), tumor necrosis factor-alpha (TNF-α), interleukin-one beta (IL-1β), were measured in removed lung tissues. Tissues were also examined histopathologically. Biochemical results showed that ULEtOAc significantly suppressed the increase of MDA, NF-κB, TNF-α, and IL-1β levels and the decrease of tGSH caused by S. aureus in lung tissue. S. aureus inoculation caused severe mononuclear cell infiltration in interstitial areas, severe lymphoid hyperplasia in bronchial-associated lymphoid tissue and severe alveolar edema, histopathologically. Treatment with ULEtOAc had an attenuating effect on these histopathological findings. Experimental results from this study suggest that ULEtOAc may be beneficial in treating S. aureus-induced oxidative and inflammatory lung damage.
Collapse
Affiliation(s)
- Bulent Dabanlioglu
- Erzincan Binali Yildirim University, Faculty of Medicine, Department of Medical Microbiology, Erzincan, Turkey
| | - Bahadir Suleyman
- Erzincan Binali Yildirim University, Faculty of Medicine, Department of Pharmacology, Erzincan, Turkey
| | - Renad Mammadov
- Erzincan Binali Yildirim University, Faculty of Medicine, Department of Pharmacology, Erzincan, Turkey
| | - Bulent Yavuzer
- Erzincan Binali Yildirim University, Faculty of Medicine, Department of Pharmacology, Erzincan, Turkey
| | - Sumeyye Akyuz
- Erzincan Binali Yildirim University, Faculty of Medicine, Department of Medical Microbiology, Erzincan, Turkey
| | - Onder Akkas
- Erzincan Binali Yildirim University, Faculty of Medicine, Department of Medical Microbiology, Erzincan, Turkey
| | - Behzad Mokhtare
- Ataturk University, Faculty of Veterinary Medicine, Department of Pathology, Erzurum, Turkey
| | - Emine Akyuz Turumtay
- Recep Tayyip Erdogan University, Faculty of Science, Department of Chemistry, Rize, Turkey
| | - Durdu Altuner
- Erzincan Binali Yildirim University, Faculty of Medicine, Department of Pharmacology, Erzincan, Turkey
| | - Taha Abdulkadir Coban
- Erzincan Binali Yildirim University, Faculty of Medicine, Department of Medical Biochemistry, Erzincan, Turkey
| | - Halis Suleyman
- Erzincan Binali Yildirim University, Faculty of Medicine, Department of Pharmacology, Erzincan, Turkey
| |
Collapse
|
3
|
Karagöz Y, Öztürk Karagöz B. Lichens in Pharmacological Action: What Happened in the Last Decade? Eurasian J Med 2022; 54:195-208. [PMID: 36655467 PMCID: PMC11163341 DOI: 10.5152/eurasianjmed.2022.22335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/04/2022] [Indexed: 01/19/2023] Open
Abstract
Lichens are a unique group of organisms, which can produce compounds that are named secondary metabolites and rarely or are not produced in other organisms. Lichens possess pharmacological actions related to their secondary metabolites. Our knowledge of lichens and their pharmacological actions rapidly increases as new technologies and devices, which facilitate the investigation of the chemical profile and biological activities of lichens, are introduced and become more readily available. In addition, new methods and perspectives, as well as suggestions for pharmacological mechanisms, accumulate daily. Furthermore, lichen substances stand as a relatively untapped source of natural products. Accordingly, researchers investigate the pharmacological actions of lichen-derived material more frequently than it was in the past. This review focused on the pharmacological activities of lichens published in the last 11 years (2012-2022). Literature data obtained from WebOfScience and PubMed databases using related search keywords revealed that anti-genotoxicity, anticancer, and anti-microbial activity studies have constantly been conducted. More recently, immunomodulatory and inflammation-related studies took to the stage. Enzyme inhibition actions were popular as well. Our selection was based on the novelty and mechanistic insight that papers presented.
Collapse
Affiliation(s)
- Yalçın Karagöz
- Department of Pharmaceutical Botany, Ağrı İbrahim Çeçen University Faculty of Pharmacy, Ağrı, Turkey
| | - Berna Öztürk Karagöz
- Department of Pharmacology, Ağrı İbrahim Çeçen University Faculty of Pharmacy, Ağrı, Turkey
| |
Collapse
|
4
|
Popovici V, Matei E, Cozaru GC, Bucur L, Gîrd CE, Schröder V, Ozon EA, Mitu MA, Musuc AM, Petrescu S, Atkinson I, Rusu A, Mitran RA, Anastasescu M, Caraiane A, Lupuliasa D, Aschie M, Dumitru E, Badea V. Design, Characterization, and Anticancer and Antimicrobial Activities of Mucoadhesive Oral Patches Loaded with Usnea barbata (L.) F. H. Wigg Ethanol Extract F-UBE-HPMC. Antioxidants (Basel) 2022; 11:1801. [PMID: 36139875 PMCID: PMC9495557 DOI: 10.3390/antiox11091801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
The oral cavity's common pathologies are tooth decay, periodontal disease, and oral cancer; oral squamous cell carcinoma (OSCC) is the most frequent oral malignancy, with a high mortality rate. Our study aims to formulate, develop, characterize, and pharmacologically investigate the oral mucoadhesive patches (F-UBE-HPMC) loaded with Usnea barbata (L.) F.H. Wigg dry ethanol extract (UBE), using HPMC K100 as a film-forming polymer. Each patch contains 312 µg UBE, with a total phenolic content (TPC) of 178.849 µg and 33.924 µg usnic acid. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were performed for their morphological characterization, followed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Pharmacotechnical evaluation involved the measurement of the specific parameters for mucoadhesive oral patches as follows: weight uniformity, thickness, folding endurance, tensile strength, elongation, moisture content, pH, disintegration time, swelling rate, and ex vivo mucoadhesion time. Thus, each F-UBE-HPMC has 104 ± 4.31 mg, a pH = 7.05 ± 0.04, a disintegration time of 130 ± 4.14 s, a swelling ratio of 272 ± 6.31% after 6 h, and a mucoadhesion time of 102 ± 3.22 min. Then, F-UBE-HPMCs pharmacological effects were investigated using brine shrimp lethality assay (BSL assay) as a cytotoxicity prescreening test, followed by complex flow cytometry analyses on blood cell cultures and oral epithelial squamous cell carcinoma CLS-354 cell line. The results revealed significant anticancer effects by considerably increasing oxidative stress and blocking DNA synthesis in CLS-354 cancer cells. The antimicrobial potential against Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27353, Candida albicans ATCC 10231, and Candida parapsilosis ATCC 22019 was assessed by a Resazurin-based 96-well plate microdilution method. The patches moderately inhibited both bacteria strains growing and displayed a significant antifungal effect, higher on C. albicans than on C. parapsilosis. All these properties lead to considering F-UBE-HPMC suitable for oral disease prevention and therapy.
Collapse
Affiliation(s)
- Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, Sf. Apostol Andrei Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Laura Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry, and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
| | - Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mirela Adriana Mitu
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Adina Magdalena Musuc
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Simona Petrescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Irina Atkinson
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Rusu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Raul-Augustin Mitran
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mihai Anastasescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Aureliana Caraiane
- Department of Oral Rehabilitation, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
| | - Mariana Aschie
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, Sf. Apostol Andrei Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Eugen Dumitru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, Ovidius University of Constanta, CEDMOG, 145 Tomis Blvd., 900591 Constanta, Romania
- Department of Gastroenterology, Emergency Hospital of Constanța, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Victoria Badea
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania
| |
Collapse
|
5
|
Dar TUH, Dar SA, Islam SU, Mangral ZA, Dar R, Singh BP, Verma P, Haque S. Lichens as a repository of bioactive compounds: an open window for green therapy against diverse cancers. Semin Cancer Biol 2021; 86:1120-1137. [PMID: 34052413 DOI: 10.1016/j.semcancer.2021.05.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023]
Abstract
Lichens, algae and fungi-based symbiotic associations, are sources of many important secondary metabolites, such as antibiotics, anti-inflammatory, antioxidants, and anticancer agents. Wide range of experiments based on in vivo and in vitro studies revealed that lichens are a rich treasure of anti-cancer compounds. Lichen extracts and isolated lichen compounds can interact with all biological entities currently identified to be responsible for tumor development. The critical ways to control the cancer development include induction of cell cycle arrests, blocking communication of growth factors, activation of anti-tumor immunity, inhibition of tumor-friendly inflammation, inhibition of tumor metastasis, and suppressing chromosome dysfunction. Also, lichen-based compounds induce the killing of cells by the process of apoptosis, autophagy, and necrosis, that inturn positively modulates metabolic networks of cells against uncontrolled cell division. Many lichen-based compounds have proven to possess potential anti-cancer activity against a wide range of cancer cells, either alone or in conjunction with other anti-cancer compounds. This review primarily emphasizes on an updated account of the repository of secondary metabolites reported in lichens. Besides, we discuss the anti-cancer potential and possible mechanism of the most frequently reported secondary metabolites derived from lichens.
Collapse
Affiliation(s)
- Tanvir Ul Hassan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India.
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Shahid Ul Islam
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India
| | - Zahid Ahmed Mangral
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir, India
| | - Rubiya Dar
- Centre of Research for Development, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Bhim Pratap Singh
- Department of Agriculture & Environmental Sciences, National Institute of Food Technology Entrepreneurship & Management (NIFTEM), Sonepat, Haryana, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
6
|
Zhao Y, Wang M, Xu B. A comprehensive review on secondary metabolites and health-promoting effects of edible lichen. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104283] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
7
|
Sepahvand A, Studzińska-Sroka E, Ramak P, Karimian V. Usnea sp.: Antimicrobial potential, bioactive compounds, ethnopharmacological uses and other pharmacological properties; a review article. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113656. [PMID: 33276059 DOI: 10.1016/j.jep.2020.113656] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Usnea sp. is a fruticose thalli lichen with interesting medicinal properties. Since ancient times, Usnea sp. has been used in traditional medicine worldwide to treat various diseases. The broad scientific studies on this lichen have proved its multidirectional biological effect, such as antimicrobial activity, which is attributed to its usnic acid content. PURPOSE The main aim of this review is to provide an up-to-date overview of the antimicrobial activities of Usnea sp., including the traditional and medicinal uses, and a critical evaluation of the presented data. Also, the mechanism of this type of action will be explained. METHODS To prepare this manuscript, the information was extracted from scientific databases (Pubmed, ScienceDirect, Wiley, Springer, and Google Scholar), books, and theses. The available scientific information was critically analysed. RESULTS Analysis of the scientific literature regarding traditional uses and bioactivity research showed that Usnea sp. extracts exhibit high antibacterial activity. The Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, and Mycobacterium tuberculosis) and aquatic oomycetous fungi were the most sensitive Usnea sp. extracts. Moderate activity against Malassezia furfur and dermatophytes was observed, as well. Gram-negative bacteria, yeast, and fungi were more frequently resistant to Usnea sp. extracts (included Escherichia coli, Candida sp., Saccharomyces cerevisiae, and Aspergillus sp.). The antiviral activity of Usnea sp. was limited. CONCLUSION The results show that the use of Usnea sp. in traditional medicine can be scientifically documented. Studies show that usnic acid is the active compound present in Usnea sp. extracts. This compound, which has a high antibacterial and cytotoxic activity, exists in large quantities in low-polarity extracts, and low concentration in these of high-polarity. Usnea sp. extracts contain compounds other than usnic acid as well with biological effects. Usnea barbata is a species that has been employed in modern-day cosmetic and pharmaceutical preparations. The information presented in the review can be considered as a source of knowledge about the Usnea sp. It presents research on biological properties reported for different species of Usnea genus and thus can facilitate their use in medicine.
Collapse
Affiliation(s)
- Asghar Sepahvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | | | - Parvin Ramak
- Research Division of Natural Resources, Lorestan Agricultural and Natural Resources Research and Education Center, AREEO, Khorramabad, Iran.
| | - Vahid Karimian
- Young Researchers and Elite Club, Yasooj Branch, Islamic Azad University, Yasooj, Iran.
| |
Collapse
|
8
|
Monteiro RLR, Kobayasi MAMR, Araujo MRD, Monteiro DR, Andreollo NA. Omeprazole and adenocarcinoma in the stomach of rats submitted to duodenogastric reflux. Is there a protective effect? Acta Cir Bras 2020; 35:e202000904. [PMID: 33027361 PMCID: PMC7531054 DOI: 10.1590/s0102-865020200090000004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/20/2020] [Indexed: 11/21/2022] Open
Abstract
Purpose: To investigate the role of omeprazole and nitrites on the gastric mucosa of
rats submitted to specific techniques to induce duodenogastric reflux. Methods: One hundred and twenty Wistar rats were divided into three groups: Group I
(n=40) -gastrotomy; Group II (n=40) - duodenogastric reflux after
gastrojejunoanastomosis latero-lateral (DGR); Group III (n=40) - retrograde
duodenogastric reflux through the pylorus (DGR-P). The groups were divided
into 4 subgroups of 10 animals, respectively treated for 16 weeks with
water, omeprazole 1.6 mg / rat / day, nitrite 600 mg / kg / day and
omeprazole plus nitrite simultaneously. Results: The proliferative lesions found were: squamous hyperplasia - 69.1%,
adenomatous hyperplasia in the anastomosis - 29.1% and prepyloric
adenomatous hyperplasia - 42.5%. Adenocarcinomas were registered in 7
animals (5.8%): one in Group I (omeprazole plus nitrite), two in Group II
(omeprazole and nitrite plus omeprazole) and four in Group III (water,
nitrite, omeprazole and omeprazole plus nitrite). Conclusions: The occurrence of squamous hyperplasia, adenomatous hyperplasia and
adenocarcinoma increased after gastrojejunal anastomoses, which cause
duodenogastric reflux. The association of omeprazole did not protect the
development of proliferative lesions and cancer induced by duodenogastric
reflux in rats.
Collapse
|
9
|
Methanol Extract of Usnea barbata Induces Cell Killing, Apoptosis, and DNA Damage against Oral Cancer Cells through Oxidative Stress. Antioxidants (Basel) 2020; 9:antiox9080694. [PMID: 32756347 PMCID: PMC7465944 DOI: 10.3390/antiox9080694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Some lichens provide the resources of common traditional medicines and show anticancer effects. However, the anticancer effect of Usnproliea barbata (U. barbata) is rarely investigated, especially for oral cancer cells. The aim of this study was to investigate the cell killing function of methanol extracts of U. barbata (MEUB) against oral cancer cells. MEUB shows preferential killing against a number of oral cancer cell lines (Ca9-22, OECM-1, CAL 27, HSC3, and SCC9) but rarely affects normal oral cell lines (HGF-1). Ca9-22 and OECM-1 cells display the highest sensitivity to MEUB and were chosen for concentration effect and time course experiments to address its cytotoxic mechanisms. MEUB induces apoptosis of oral cancer cells in terms of the findings from flow cytometric assays and Western blotting, such as subG1 accumulation, annexin V detection, and pancaspase activation as well as poly (ADP-ribose) polymerase (PARP) cleavage. MEUB induces oxidative stress and DNA damage of oral cancer cells following flow cytometric assays, such as reactive oxygen species (ROS)/mitochondrial superoxide (MitoSOX) production, mitochondrial membrane potential (MMP) depletion as well as overexpression of γH2AX and 8-oxo-2'deoxyguanosine (8-oxodG). All MEUB-induced changes in oral cancer cells were triggered by oxidative stress which was validated by pretreatment with antioxidant N-acetylcysteine (NAC). In conclusion, MEUB causes preferential killing of oral cancer cells and is associated with oxidative stress, apoptosis, and DNA damage.
Collapse
|
10
|
Anticancer Potential of Lichens' Secondary Metabolites. Biomolecules 2020; 10:biom10010087. [PMID: 31948092 PMCID: PMC7022966 DOI: 10.3390/biom10010087] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Lichens produce different classes of phenolic compounds, including anthraquinones, xanthones, dibenzofuranes, depsides and depsidones. Many of them have revealed effective biological activities such as antioxidant, antiviral, antibiotics, antifungal, and anticancer. Although no clinical study has been conducted yet, there are number of in vitro and in vivo studies demonstrating anticancer effects of lichen metabolites. The main goal of our work was to review most recent published papers dealing with anticancer activities of secondary metabolites of lichens and point out to their perspective clinical use in cancer management.
Collapse
|