1
|
Sun Q, Zhang H, Du HB, Zhao ZA, Li CJ, Chen SJ, Li YM, Zhang SL, Liu JC, Niu CY, Zhao ZG. ESTROGEN ALLEVIATES POSTHEMORRHAGIC SHOCK MESENTERIC LYMPH-MEDIATED LUNG INJURY THROUGH AUTOPHAGY INHIBITION. Shock 2023; 59:754-762. [PMID: 36840514 DOI: 10.1097/shk.0000000000002102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
ABSTRACT Background: Hemorrhagic shock-induced acute lung injury (ALI) is commonly associated with the posthemorrhagic shock mesenteric lymph (PHSML) return. Whether excessive autophagy is involved in PHSML-mediated ALI remains unclear. The relationship between estrogen treatment and PHSML or autophagy needs to verify. The current study will clarify the role of estrogen in reducing PHSML-mediated ALI through inhibition of autophagy. Methods: First, a hemorrhagic shock model in conscious rats was used to observe the effects of 17β-estradiol (E2) on intestinal blood flow, pulmonary function, intestinal and pulmonary morphology, and expression of autophagy marker proteins. Meanwhile, the effect of PHSML and autophagy agonist during E2 treatment was also investigated. Secondly, rat primary pulmonary microvascular endothelial cells were used to observe the effect of PHSML, PHSML plus E2, and E2-PHSML (PHSML obtained from rats treated by E2) on the cell viability. Results: Hemorrhagic shock induced intestinal and pulmonary tissue damage and increased wet/dry ratio, reduced intestinal blood flow, along with pulmonary dysfunction characterized by increased functional residual capacity and lung resistance and decreased inspiratory capacity and peak expiratory flow. Hemorrhagic shock also enhanced the autophagy levels in intestinal and pulmonary tissue, which was characterized by increased expressions of LC3 II/I and Beclin-1 and decreased expression of p62. E2 treatment significantly attenuated these adverse changes after hemorrhagic shock, which was reversed by PHSML or rapamycin administration. Importantly, PHSML incubation decreased the viability of pulmonary microvascular endothelial cells, while E2 coincubation or E2-treated lymph counteracted the adverse roles of PHSML. Conclusions: The role of estrogen reducing PHSML-mediated ALI is associated with the inhibition of autophagy.
Collapse
Affiliation(s)
| | | | | | | | | | - Si-Jie Chen
- Institute of Microcirculation and Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Yi-Ming Li
- Institute of Microcirculation and Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Sen-Lu Zhang
- Institute of Microcirculation and Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Jun-Chao Liu
- The First Affiliated Hospital, Hebei North University, Zhangjiakou, China
| | | | | |
Collapse
|
2
|
Liu H, Li JF, Zhang LM, Wang HH, Wang XQ, Liu GQ, Du HB, Jin YJ, Xing LQ, Zhao ZG, Niu CY. POSTHEMORRHAGIC SHOCK MESENTERIC LYMPH IMPAIRS SPLENIC DENDRITIC CELL FUNCTION IN MICE. Shock 2023; 59:256-266. [PMID: 36427100 DOI: 10.1097/shk.0000000000002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Dendritic cell (DC)-mediated immune dysfunction is involved in the process of severe hemorrhagic shock that leads to sepsis. Although post-hemorrhagic shock mesenteric lymph (PHSML) induces immune organs injuries and apoptosis, whether PHSML exerts adverse effects on splenic DCs remains unknown. In this study, we established a hemorrhagic shock model (40 ± 2 mm Hg for 60 min) followed by fluid resuscitation with the shed blood and equal Ringer's solution and drained the PHSML after resuscitation. At 3 h after resuscitation, we harvested the splenic tissue to isolate DCs using anti-CD11c immunomagnetic beads and then detected the necrotic and apoptotic rates in splenocytes and splenic DCs. We also detected the levels of TNF-α, IL-10, and IL-12 in the culture supernatants and surface marker expressions of MHC-II, CD80, and CD86 of splenic DCs following LPS stimulation for 24 h. Second, we purified the DCs from splenocytes of normal mice to investigate the effects of PHSML treatment on cytokine production and surface marker expression following LPS stimulation. The results showed that PHSML drainage attenuated LPS-induced cell death of splenocytes and DCs. Meanwhile, PHSML drainage enhanced the DC percentage in splenocytes and increased the TNF-α and IL-12 production by DCs and the expressions of CD80, CD86, and MHCII of DCs treated by LPS. Furthermore, PHSML treatment reduced the productions of TNF-α, IL-10, and IL-12 and the expressions of CD80 and CD86 in normal DCs after treatment with LPS. In summary, the current investigation demonstrated that PHSML inhibited the cytokine production and surface marker expressions of DCs stimulated by LPS, suggesting that PHSML plays an important role in hemorrhagic shock-induced immunosuppression through the impairment of DC function and maturation.
Collapse
Affiliation(s)
- Hua Liu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | | | | | | | - Xu-Qing Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | - Gui-Qing Liu
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | | | | | - Li-Qiang Xing
- Institute of Microcirculation, Hebei North University, Zhangjiakou, Hebei, China
| | | | | |
Collapse
|
3
|
Du HB, Jiang SB, Zhao ZA, Zhang H, Zhang LM, Wang Z, Guo YX, Zhai JY, Wang P, Zhao ZG, Niu CY, Jiang LN. TLR2/TLR4-Enhanced TIPE2 Expression Is Involved in Post-Hemorrhagic Shock Mesenteric Lymph-Induced Activation of CD4+T Cells. Front Immunol 2022; 13:838618. [PMID: 35572554 PMCID: PMC9101470 DOI: 10.3389/fimmu.2022.838618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Post hemorrhagic shock mesenteric lymph (PHSML) return contributes to CD4+ T cell dysfunction, which leads to immune dysfunction and uncontrolled inflammatory response. Tumor necrosis factor α induced protein 8 like-2 (TIPE2) is one of the essential proteins to maintain the immune homeostasis. This study investigated the role of TIPE2 in regulation of CD4+ T lymphocyte function in interaction of PHSML and TLR2/TLR4. Methods The splenic CD4+ T cells were isolated from various mice (WT, TLR2-/-, TLR4-/-) by immunomagnetic beads, and stimulated with PHSML, normal lymphatic fluid (NML), respectively. Application of TIPE2-carrying interfering fragments of lentivirus were transfected to WT, TLR4-/-, and TLR2-/- CD4+ T cells, respectively. After interference of TIPE2, they were stimulated with PHSML and NML for the examinations of TIPE2, TLR2, and TLR4 mRNA expressions, proliferation, activation molecules on surface, and cytokine secretion function. Results PHSML stimulation significantly upregulated TIPE2, TLR2, and TLR4 mRNA expressions, decreased proliferation, CD25 expression, and IFN-γ secretion, and increased the secretion ability of IL-4 in WT CD4+ T cells. TIPE2 silencing enhanced proliferative capacity, upregulated CD25 expression, and increased IFNγ secretion in CD4+ T cells. PHSML stimulated TLR2-/-CD4+ T or TLR4-/-CD4+ T cells of which TIPE2 were silenced. TLR2 or TLR4 knockout attenuated PHSML-induced CD4+ T cells dysfunction; PHSML stimulation of silent TIPE2-expressing TLR2-/-CD4+ T or TLR4-/-CD4+ T revealed that the coexistence of low TIPE2 expression with lack of TLR2 or TLR4 eliminated this beneficial effect. Conclusion TIPE2 improves the PHSML-mediated CD4+T cells dysfunction by regulating TLR2/TLR4 pathway, providing a new intervention target following hemorrhagic shock-induced immune dysfunction.
Collapse
Affiliation(s)
- Hui-Bo Du
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Sun-Ban Jiang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Hong Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Li-Min Zhang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Zhao Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Ya-Xiong Guo
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Jia-Yi Zhai
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Peng Wang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| | - Chun-Yu Niu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Li-Na Jiang
- Institute of Microcirculation, Hebei North University, Zhangjiakou, China
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Shijiazhuang, China
- Key Laboratory of Microcirculation and Shock in Zhangjiakou City, Zhangjiakou, China
| |
Collapse
|
5
|
Tang Y, Kong J, Zhou B, Wang X, Liu X, Wang Y, Zhu S. Mesenteric Lymph Duct Ligation Alleviates Acute Lung Injury Caused by Severe Acute Pancreatitis Through Inhibition of High Mobility Group Box 1-Induced Inflammation in Rats. Dig Dis Sci 2021; 66:4344-4353. [PMID: 33433807 PMCID: PMC8589802 DOI: 10.1007/s10620-020-06801-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is the most common complication and one of the leading causes of mortality of severe acute pancreatitis (SAP). Nevertheless, no effective therapeutic schemes are presently available. AIMS To investigate the effect and potential mechanism of mesenteric lymph duct ligation (MLDL) on experimental SAP-induced ALI. METHODS Immediately following MLDL, rats were subjected to SAP by retrograde injection of 5% sodium taurocholate into the biliopancreatic duct. At 24 h after modeling, tissues were collected for morphological examination. The levels of TNF-α, IL-6, intercellular adhesion molecule-1 (ICAM1), diamine oxidase (DAO), and D-lactic acid (D-LA) in serum, and the myeloperoxidase (MPO) activity in lung tissues were determined. Moreover, the expressions of high mobility group box 1 (HMGB1), receptor of advanced glycation endproducts (RAGE), and NF-κB p65 at the mRNA and protein levels in lung tissues, and the expressions of HMGB1, RAGE, and TNF-α at the mRNA level in intestinal lymphoid tissues were evaluated. RESULTS MLDL significantly attenuated the histological injury of the pancreas and lung and reduced the production of TNF-α, IL-6, and ICAM1. Besides, MLDL repressed the activity of MPO in the lung. However, the levels of serum DAO and D-LA were decreased without obvious morphological improvement in intestinal injury. Moreover, MLDL apparently reduced the up-regulation of HMGB1, RAGE, and NF-κB p65 in lung tissues, as well as the expressions of HMGB1, RAGE, and TNF-α in intestinal lymphoid tissues. CONCLUSIONS Mesenteric lymph was a source of harmful factors leading to SAP-ALI. MLDL could alleviate SAP-ALI probably by inhibiting HMGB1-induced production of inflammation factors.
Collapse
Affiliation(s)
- Yishuang Tang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Kong
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bingduo Zhou
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xiaosu Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaowen Liu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengliang Zhu
- Department of Gastroenterology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|