1
|
Khan MS, Kumar S, Singh RK, Singh J, Duttamajumder SK, Kapur R. Characterization of leaf transcriptome, development and utilization of unigenes-derived microsatellite markers in sugarcane ( Saccharum sp. hybrid). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:665-682. [PMID: 30042621 PMCID: PMC6041238 DOI: 10.1007/s12298-018-0563-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Sugarcane (Saccharum species hybrid) is the major source of sugar (> 80% sugar) in the world and is cultivated in more than 115 countries. It has recently gained attention as a source of biofuel (ethanol). Due to genomic complexity, the development of new genomic resources is imperative in understanding the gene regulation and function, and to fine tune the genetic improvement of sugarcane. In this study, a cDNA library was constructed from mature leaves so as to develop ESTs resources which were further compared with nucleotide and protein databases to explore the functional identity of sugarcane genes. The non-redundant ESTs (unigenes) were categorized into 18 metabolic functions. The major categories were bioenergetics and photosynthesis (4%), cell metabolism (5%), development related protein (3%), membrane-related, mobile genetic elements (5%), signal transduction (2%), DNA (1%), RNA (1%) and protein (2%) metabolism, other metabolic processes (3%), transcription factors (1%), transport (4%) and proteins related to stress/defense (4%). From 540 unique ESTs, 212 simple sequence repeats were identified, of which 206 were from 463 singlets and six were mined from 77 contig sequences. A total of 540 unique EST sequences were used for SSR search of which 97 (17.9%) contained specified SSR motifs, generating 212 unique SSRs. The genes characterized in this study and the EST-derived microsatellite markers identified from the cDNA library will enrich genomic resources for association- and linkage-mapping studies in sugarcane.
Collapse
Affiliation(s)
- Mohammad Suhail Khan
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
| | - Sanjeev Kumar
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
| | - Ram Kewal Singh
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
- Present Address: Division of Crop Science, Indian Council of Agricultural Research, Dr. Rajendra Prasad Road, Krishi Bhawan, New Delhi, 110 001 India
| | - Jyotsnendra Singh
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
| | | | - Raman Kapur
- ICAR-Indian Institute of Sugarcane Research, Raibareli Road, P.O. Dilkusha, Lucknow, U.P. 226002 India
| |
Collapse
|
2
|
Souza TP, Dias RO, Silva-Filho MC. Defense-related proteins involved in sugarcane responses to biotic stress. Genet Mol Biol 2017; 40:360-372. [PMID: 28222203 PMCID: PMC5452140 DOI: 10.1590/1678-4685-gmb-2016-0057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/27/2016] [Indexed: 11/22/2022] Open
Abstract
Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives.
Collapse
Affiliation(s)
- Thais P Souza
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Renata O Dias
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Marcio C Silva-Filho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
3
|
Boaretto LF, Carvalho G, Borgo L, Creste S, Landell MGA, Mazzafera P, Azevedo RA. Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:165-75. [PMID: 24308986 DOI: 10.1016/j.plaphy.2013.11.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/13/2013] [Indexed: 05/18/2023]
Abstract
The biochemical responses of the enzymatic antioxidant system of a drought-tolerant cultivar (IACSP 94-2094) and a commercial cultivar in Brazil (IACSP 95-5000) grown under two levels of soil water restriction (70% and 30% Soil Available Water Content) were investigated. IACSP 94-2094 exhibited one additional active superoxide dismutase (Cu/Zn-SOD VI) isoenzyme in comparison to IACSP 95-5000, possibly contributing to the heightened response of IACSP 94-2094 to the induced stress. The total glutathione reductase (GR) activity increased substantially in IACSP 94-2094 under conditions of severe water stress; however, the appearance of a new GR isoenzyme and the disappearance of another isoenzyme were found not to be related to the stress response because the cultivars from both treatment groups (control and water restrictions) exhibited identical changes. Catalase (CAT) activity seems to have a more direct role in H2O2 detoxification under water stress condition and the shift in isoenzymes in the tolerant cultivar might have contributed to this response, which may be dependent upon the location where the excessive H2O2 is being produced under stress. The improved performance of IACSP 94-2094 under drought stress was associated with a more efficient antioxidant system response, particularly under conditions of mild stress.
Collapse
Affiliation(s)
- Luis F Boaretto
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Avenida Pádua Dias 11, CP 9, 13418-900 Piracicaba, SP, Brazil
| | - Giselle Carvalho
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Avenida Pádua Dias 11, CP 9, 13418-900 Piracicaba, SP, Brazil
| | - Lucélia Borgo
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Avenida Pádua Dias 11, CP 9, 13418-900 Piracicaba, SP, Brazil
| | - Silvana Creste
- Centro Cana de Açúcar, Instituto Agronômico de Campinas, CP 206, 14001-970 Ribeirão Preto, SP, Brazil
| | - Marcos G A Landell
- Centro Cana de Açúcar, Instituto Agronômico de Campinas, CP 206, 14001-970 Ribeirão Preto, SP, Brazil
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, 13083-970 Campinas, SP, Brazil
| | - Ricardo A Azevedo
- Departamento de Genética, Universidade de São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Avenida Pádua Dias 11, CP 9, 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
4
|
Wahid A. Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. JOURNAL OF PLANT RESEARCH 2007; 120:219-28. [PMID: 17024517 DOI: 10.1007/s10265-006-0040-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 08/16/2006] [Indexed: 05/04/2023]
Abstract
Global increase in ambient temperature is a critical factor for plant growth. In order to study the changes in growth over short intervals, various primary and secondary metabolites, and their relationships with thermotolerance, 1-month-old sugarcane (Saccharum officinarum) sprouts were grown under control conditions (28 degrees C) or under heat-stress conditions (40 degrees C), and measurements were made at six 12-h intervals. Heat stress greatly reduced dry matter and leaf area of sprouts initially but only nominally later on. Changes in the rates of relative growth and net assimilation were greater than relative leaf expansion, indicating an adverse effect of heat on assimilation of nutrients and CO(2) in producing dry matter. Although reduction in leaf water potential was an immediate response to heat, this effect was offset by early synthesis of free proline, glycinebetaine and soluble sugars (primary metabolites). Among secondary metabolites, anthocyanin synthesis was similar to primary metabolites; carotenoids and soluble phenolics accumulated later while chlorophyll remained unaffected. Relationships of growth attributes and metabolite levels, not seen in the controls, were evident under heat stress. In summary, observed changes in metabolite levels were spread over time and space and were crucial in improving net assimilation and heat tolerance of sugarcane.
Collapse
Affiliation(s)
- Abdul Wahid
- Department of Botany, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
5
|
Wahid A, Ghazanfar A. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:723-30. [PMID: 16616583 DOI: 10.1016/j.jplph.2005.07.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 07/19/2005] [Indexed: 05/08/2023]
Abstract
Accumulation of toxic ions in plant tissues modulates the levels of primary and secondary metabolites, which may be related to salinity tolerance. In this study two sugarcane clones, CP-4333 (tolerant) and HSF-240 (sensitive), were exposed to salinity levels at the formative stage, and evaluated three times at 10-day intervals. Although net rate of photosynthesis (Pn), leaf area, length and dry weight of shoots were decreased in both clones, the CP-4333 showed less reduction compared to HSF-240. Both clones displayed a general tendency to accumulate Na+ and Cl- and little K+, though CP-4333 accumulated less Na+ and more K+ compared to HSF-240, and thus showed a higher K+:Na+ ratio. The carotenoid (CAR) content remained steady, while total chlorophyll (CHL) was slightly reduced in the tolerant clone and significantly reduced in HSF-240. In contrast, soluble phenolics (PHE), anthocyanins (ANT) and flavones (FLA) levels were 2.5, 2.8 and 3.0 times greater in CP-4333 in comparison with HSF-240. The decrease in Pn and most secondary metabolites demonstrated by the sensitive clone, but not evidenced in the tolerant clones, suggest that the presence of those metabolites is related to increased salt tolerance of sugarcane. The increased synthesis of PHE, ANT and FLA seems to protect sugarcane from ion-induced oxidative stress, probably due to a common structural skeleton, the phenyl group, of those metabolites. CAR, as components of the light harvesting center (LHC) and biosynthesized in chloroplasts, may confer resistance to this organelle. The PHE, ANT and FLA synthesized in the cytosol may protect cells from ion-induced oxidative damage by binding the ions and thereby showing reduced toxicity on cytoplasmic structures.
Collapse
Affiliation(s)
- Abdul Wahid
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan.
| | | |
Collapse
|
6
|
Teixeira FK, Menezes-Benavente L, Galvão VC, Margis-Pinheiro M. Multigene families encode the major enzymes of antioxidant metabolism in Eucalyptus grandis L. Genet Mol Biol 2005. [DOI: 10.1590/s1415-47572005000400007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
7
|
|