1
|
Characterization of prostanoid pathway and the control of its activity by the eyestalk optic ganglion in the female giant freshwater prawn, Macrobrachium rosenbergii. Heliyon 2021; 7:e05898. [PMID: 33553720 PMCID: PMC7851786 DOI: 10.1016/j.heliyon.2021.e05898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/24/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an economically valuable species that are distributed throughout the Asia-Pacific region. With the natural population declining due to overfishing, aquaculture of this species is deemed necessary. Hence, it is essential to understand the mechanisms regulating reproduction in order to increase their production. Prostaglandins (PGs) play an important role in reproduction in most vertebrates and several invertebrates. It has been proposed that crustaceans have PGs but the prostanoids pathway in the giant freshwater prawn is still unclear. In this study, we identified 25 prostanoid-related genes involved in the biosynthesis of active prostanoids in M. rosenbergii using in silico searches of transcriptome data. Comparative analysis of encoded proteins for the MroPGES2 gene with other species was performed to confirm their evolutionary conservation. Gene expression analysis revealed the correlation of MroPGES2 gene expression level with the progress of ovarian development. Eyestalk ablation increased the expression level of MroPGES2 gene compared to intact groups during the ovary maturation stages. Collectively, this study confirmed the existence of prostanoids in the giant freshwater prawn, as well as characterizing key gene MroPGES2 associated with the prostanoid pathway. We propose that MroPGES2 may play an important role in M. rosenbergii ovarian maturation and its expression is under the inhibitory control from the eyestalk optic ganglion hormones. Identification of genes in prostanoid pathway and their expressions enables future functional studies to be performed, which may lead to applications in the aquaculture of this species.
Collapse
|
2
|
Swetha CH, Girish BP, Hemalatha M, Reddy PS. Induction of vitellogenesis, methyl farnesoate synthesis and ecdysteroidogenesis in two edible crabs by arachidonic acid and prostaglandins. ACTA ACUST UNITED AC 2020; 223:jeb.212381. [PMID: 31953363 DOI: 10.1242/jeb.212381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/09/2020] [Indexed: 01/05/2023]
Abstract
The present study investigated the effect of arachidonic acid (AA) and selected prostaglandins on the regulation of vitellogenesis, ecdysteroidogenesis and methyl farnesoate (MF) synthesis in the freshwater crab Oziotelphusa senex senex and the giant mud crab, Scylla serrata Administration of AA and prostaglandin F2α (PGF2α) and prostaglandin E2 (PGE2) significantly increased ovarian index, oocyte diameter and ovarian vitellogenin levels and ecdysteroid and MF levels in the hemolymph of crabs. Secretions of MF and ecdysteroids from in vitro cultured mandibular organs (MO) and Y-organs (YO) isolated from intermolt crabs injected with AA, PGF2α and PGE2 were greater when compared with controls. In contrast, injection of prostaglandin D2 (PGD2) had no effect on vitellogenesis, ecdysteroid and MF levels in circulation. In vitro secretion of MF from MO explants isolated from avitellogenic crabs incubated with AA, PGF2α and PGE2 increased in a time-dependent manner. Conversely, incubation of YOs isolated from avitellogenic crabs with AA, PGF2α and PGE2 had no effect on secretion of ecdsyteroids. These results implicate prostaglandins in the regulation of reproduction by inducing the synthesis of MF and consequent ecdysteroid synthesis in brachyuran crabs, and provide an alternative molecular intervention mechanism to the traditional eyestalk ablation methodology to induce vitellogenesis and ovarian maturation in crustaceans.
Collapse
Affiliation(s)
- C H Swetha
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517 502, India
| | - B P Girish
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517 502, India
| | - M Hemalatha
- Department of Zoology, Sri Venkateswara University, Tirupati 517 502, India
| | | |
Collapse
|
3
|
Guppy JL, Jones DB, Jerry DR, Wade NM, Raadsma HW, Huerlimann R, Zenger KR. The State of " Omics" Research for Farmed Penaeids: Advances in Research and Impediments to Industry Utilization. Front Genet 2018; 9:282. [PMID: 30123237 PMCID: PMC6085479 DOI: 10.3389/fgene.2018.00282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Elucidating the underlying genetic drivers of production traits in agricultural and aquaculture species is critical to efforts to maximize farming efficiency. "Omics" based methods (i.e., transcriptomics, genomics, proteomics, and metabolomics) are increasingly being applied to gain unprecedented insight into the biology of many aquaculture species. While the culture of penaeid shrimp has increased markedly, the industry continues to be impeded in many regards by disease, reproductive dysfunction, and a poor understanding of production traits. Extensive effort has been, and continues to be, applied to develop critical genomic resources for many commercially important penaeids. However, the industry application of these genomic resources, and the translation of the knowledge derived from "omics" studies has not yet been completely realized. Integration between the multiple "omics" resources now available (i.e., genome assemblies, transcriptomes, linkage maps, optical maps, and proteomes) will prove critical to unlocking the full utility of these otherwise independently developed and isolated resources. Furthermore, emerging "omics" based techniques are now available to address longstanding issues with completing keystone genome assemblies (e.g., through long-read sequencing), and can provide cost-effective industrial scale genotyping tools (e.g., through low density SNP chips and genotype-by-sequencing) to undertake advanced selective breeding programs (i.e., genomic selection) and powerful genome-wide association studies. In particular, this review highlights the status, utility and suggested path forward for continued development, and improved use of "omics" resources in penaeid aquaculture.
Collapse
Affiliation(s)
- Jarrod L. Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - David B. Jones
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Dean R. Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Nicholas M. Wade
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Aquaculture Program, CSIRO Agriculture & Food, Queensland Bioscience Precinct, St Lucia, QLD, Australia
| | - Herman W. Raadsma
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Roger Huerlimann
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| | - Kyall R. Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, Australia
- College of Science and Engineering and Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
4
|
Peng J, Wei P, Chen X, Zeng D, Chen X. Identification of cold responsive genes in Pacific white shrimp (Litopenaeus vannamei) by suppression subtractive hybridization. Gene 2016; 575:667-74. [DOI: 10.1016/j.gene.2015.09.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/28/2015] [Accepted: 09/18/2015] [Indexed: 12/26/2022]
|
5
|
Ngernsoungnern P, Sretarugsa P, Ngernsoungnern A. Alteration of egg activation by protease inhibitors in the black tiger shrimp,Penaeus monodon. INVERTEBR REPROD DEV 2015. [DOI: 10.1080/07924259.2015.1086827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Wimuttisuk W, Tobwor P, Deenarn P, Danwisetkanjana K, Pinkaew D, Kirtikara K, Vichai V. Insights into the prostanoid pathway in the ovary development of the penaeid shrimp Penaeus monodon. PLoS One 2013; 8:e76934. [PMID: 24116186 PMCID: PMC3792876 DOI: 10.1371/journal.pone.0076934] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 09/05/2013] [Indexed: 02/07/2023] Open
Abstract
The prostanoid pathway converts polyunsaturated fatty acids (PUFAs) into bioactive lipid mediators, including prostaglandins, thromboxanes and prostacyclins, all of which play vital roles in the immune and reproductive systems in most animal phyla. In crustaceans, PUFAs and prostaglandins have been detected and often associated with female reproductive maturation. However, the presence of prostanoid biosynthesis genes remained in question in these species. In this study, we outlined the prostanoid pathway in the black tiger shrimp Penaeus monodon based on the amplification of nine prostanoid biosynthesis genes: cytosolic phospholipase A2, hematopoietic prostaglandin D synthase, glutathione-dependent prostaglandin D synthase, prostaglandin E synthase 1, prostaglandin E synthase 2, prostaglandin E synthase 3, prostaglandin F synthase, thromboxane A synthase and cyclooxygenase. TBLASTX analysis confirmed the identities of these genes with 51-99% sequence identities to their closest homologs. In addition, prostaglandin F2α (PGF2α), which is a product of the prostaglandin F synthase enzyme, was detected for the first time in P. monodon ovaries along with the previously identified PUFAs and prostaglandin E2 (PGE2) using RP-HPLC and mass-spectrometry. The prostaglandin synthase activity was also observed in shrimp ovary homogenates using in vitro activity assay. When prostaglandin biosynthesis was examined in different stages of shrimp ovaries, we found that the amounts of prostaglandin F synthase gene transcripts and PGF2α decreased as the ovaries matured. These findings not only indicate the presence of a functional prostanoid pathway in penaeid shrimp, but also suggest a possible role of the PGF2α biosynthesis in shrimp ovarian development.
Collapse
Affiliation(s)
- Wananit Wimuttisuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
- ** E-mail:
| | - Punsa Tobwor
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Pacharawan Deenarn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Kannawat Danwisetkanjana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Decha Pinkaew
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Kanyawim Kirtikara
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| | - Vanicha Vichai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, Thailand
| |
Collapse
|
7
|
Conservation of the RNA Transport Machineries and Their Coupling to Translation Control across Eukaryotes. Comp Funct Genomics 2012; 2012:287852. [PMID: 22666086 PMCID: PMC3361156 DOI: 10.1155/2012/287852] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 02/09/2012] [Indexed: 01/03/2023] Open
Abstract
Restriction of proteins to discrete subcellular regions is a common mechanism to establish cellular asymmetries and depends on a coordinated program of mRNA localization and translation control. Many processes from the budding of a yeast to the establishment of metazoan embryonic axes and the migration of human neurons, depend on this type of cell polarization. How factors controlling transport and translation assemble to regulate at the same time the movement and translation of transported mRNAs, and whether these mechanisms are conserved across kingdoms is not yet entirely understood. In this review we will focus on some of the best characterized examples of mRNA transport machineries, the "yeast locasome" as an example of RNA transport and translation control in unicellular eukaryotes, and on the Drosophila Bic-D/Egl/Dyn RNA localization machinery as an example of RNA transport in higher eukaryotes. This focus is motivated by the relatively advanced knowledge about the proteins that connect the localizing mRNAs to the transport motors and the many well studied proteins involved in translational control of specific transcripts that are moved by these machineries. We will also discuss whether the core of these RNA transport machineries and factors regulating mRNA localization and translation are conserved across eukaryotes.
Collapse
|
8
|
Lu W, Li WW, Jin XK, He L, Jiang H, Wang Q. Reproductive function of Selenoprotein M in Chinese mitten crabs (Eriocheir sinesis). Peptides 2012; 34:168-76. [PMID: 21557973 DOI: 10.1016/j.peptides.2011.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/19/2011] [Accepted: 04/21/2011] [Indexed: 11/22/2022]
Abstract
Selenoproteins are present in all major forms of life, including eukaryotes, bacteria and archaea. In eukaryotic animals, selenoproteins often function as antioxidants, but rare or absent in other phyla, such as plants and fungi (except for the green alga Chlamydomonas). Selenoprotein M (SelM) is a selenocysteine containing protein with redox activity, which is involved in the antioxidant response. However, information remains limited about SelM physiology and function in marine invertebrates, particularly in crustaceans. Hence, we investigated the reproductive functionality of SelM in the Chinese mitten crab (Eriocheir sinensis), which is a commercially important yet disease vulnerable aquaculture species. The full-length SelM cDNA (928bp) strand was cloned by using PCR, based on an initial expressed sequence tag (EST) that was isolated from a hepatopancreatic cDNA library. The SelM cDNA contained a 390bp open reading frame (ORF) that encoded a putative 129 amino acid (aa) protein. SelM mRNA expression in E. sinensis was (a) tissue-specific, with the highest expression observed in the hepatopancreas, testis, ovaries and intestines. Based on this information, we then detected the different stages of tissue expression for SelM in the testis, ovary, and male crab hepatopancreas and hemolymph, and the enzyme activity of SelM in the testis. Overall, SelM was isolated successfully from the Chinese mitten crab, and its involvement in the regulation of reproduction during the period of rapid development in E. sinensis was confirmed.
Collapse
Affiliation(s)
- Wei Lu
- East China Normal University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
9
|
Ponza P, Yocawibun P, Sittikankaew K, Hiransuchalert R, Yamano K, Klinbunga S. Molecular cloning and expression analysis of the Mitogen-activating protein kinase 1 (MAPK1) gene and protein during ovarian development of the giant tiger shrimp Penaeus monodon. Mol Reprod Dev 2011; 78:347-60. [PMID: 21542048 DOI: 10.1002/mrd.21310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 03/10/2011] [Indexed: 11/06/2022]
Abstract
Isolation and characterization of genes and/or proteins differentially expressed in ovaries are necessary for understanding ovarian development in the giant tiger shrimp (Penaeus monodon). In this study, the full-length cDNA of P. monodon mitogen-activating protein kinase 1 (PmMAPK1) was characterized. PmMAPK1 was 1,398 bp in length containing an open reading frame of 1,098 bp that corresponded to a polypeptide of 365 amino acids. PmMAPK1 was more abundantly expressed in ovaries than in testes of P. monodon. Quantitative real-time PCR revealed differential expression levels of PmMAPK1 mRNA during ovarian development of intact broodstock, where it peaked in early cortical rod (stage III) ovaries (P < 0.05) and slightly decreased afterwards (P > 0.05). Likewise, the expression level of PmMAPK1 in early cortical rod and mature (IV) ovaries was significantly greater than that in previtellogenic (I) and vitellogenic (II) ovaries of eyestalk-ablated broodstock (P < 0.05). The PmMAPK1 transcript was localized in ooplasm of previtellogenic oocytes. In intact broodstock, the expression of the PmMAPK1 protein was clearly increased from previtellogenic ovaries in subsequent stages of ovarian development (P < 0.05). In contrast, the level of ovarian PmMAPK1 protein was comparable during oogenesis in eyestalk-ablated broodstock (P > 0.05). The PmMAPK1 protein was localized in ooplasm of previtellogenic and vitellogenic oocytes. It was also detected around the nuclear membrane of early cortical rod oocytes in both intact and eyestalk-ablated broodstock. Results indicated that PmMAPK1 gene products seem to play functional roles in the development and maturation of oocytes/ovaries in P. monodon.
Collapse
Affiliation(s)
- Pattareeya Ponza
- Aquatic Molecular Genetics and Biotechnology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani, Thailand
| | | | | | | | | | | |
Collapse
|