1
|
Richardson EA, Roe RM, Apperson CS, Ponnusamy L. Rickettsia amblyommatis in Ticks: A Review of Distribution, Pathogenicity, and Diversity. Microorganisms 2023; 11:microorganisms11020493. [PMID: 36838458 PMCID: PMC9960904 DOI: 10.3390/microorganisms11020493] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Rickettsia amblyommatis is a potentially pathogenic species of Rickettsia within the spotted fever group vectored by ticks. While many studies have been published on this species, there is debate over its pathogenicity and the inhibitory role it plays in diagnosing illnesses caused by other spotted fever group Rickettsia species. Many publications have recorded the high infection prevalence of R. amblyommatis in tick populations at a global scale. While this species is rather ubiquitous, questions remain over the epidemiological importance of this possible human pathogen. With tick-borne diseases on the rise, understanding the exact role that R. amblyommatis plays as a pathogen and inhibitor of infection relative to other tick-borne pathogens will help public health efforts. The goal of this review was to compile the known literature on R. amblyommatis, review what we know about its geographic distribution, tick vectors, and pathogenicity, assess relatedness between various international strains from ticks by phylogenetic analysis and draw conclusions regarding future research needed.
Collapse
|
2
|
Grandi G, Chiappa G, Ullman K, Lindgren PE, Olivieri E, Sassera D, Östlund E, Omazic A, Perissinotto D, Söderlund R. Characterization of the bacterial microbiome of Swedish ticks through 16S rRNA amplicon sequencing of whole ticks and of individual tick organs. Parasit Vectors 2023; 16:39. [PMID: 36717919 PMCID: PMC9885626 DOI: 10.1186/s13071-022-05638-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/24/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The composition of the microbial flora associated with ixodid ticks has been studied in several species, revealing the importance of geographical origin, developmental stage(s) and feeding status of the tick, as well as substantial differences between tissues and organs. Studying the microbiome in the correct context and scale is therefore necessary for understanding the interactions between tick-borne pathogens and other microorganisms as well as other aspects of tick biology. METHODS In the present study the microbial flora of whole Ixodes ricinus, I. persulcatus and I. trianguliceps ticks were analyzed with 16S rRNA amplicon sequencing. Additionally, tick organs (midguts, Malpighian tubules, ovaries, salivary glands) from flat and engorged I. ricinus female ticks were examined with the same methodology. RESULTS The most abundant bacteria belonged to the group of Proteobacteria (Cand. Midichloria mitochondrii and Cand. Lariskella). 16S amplicon sequencing of dissected tick organs provided more information on the diversity of I. ricinus-associated microbial flora, especially when organs were collected from engorged ticks. Bacterial genera significantly associated with tick feeding status as well as genera associated with the presence of tick-borne pathogens were identified. CONCLUSIONS These results contribute to the knowledge of microbial flora associated with ixodid ticks in their northernmost distribution limit in Europe and opens new perspectives for other investigations on the function of these bacteria, including those using other approaches like in vitro cultivation and in vitro models.
Collapse
Affiliation(s)
- Giulio Grandi
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden ,grid.6341.00000 0000 8578 2742Department of Biomedical Sciences and Veterinary Public Health (BVF), Swedish University of Agricultural Sciences (SLU), Ulls Väg 26, 750 07 Uppsala, Sweden
| | - Giulia Chiappa
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Karin Ullman
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Per-Eric Lindgren
- grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Sciences, Division of Inflammation and Infection, Linköping University, 581 85 Linköping, Sweden ,grid.413253.2Department of Clinical Microbiology, County Hospital Ryhov, 551 85 Jönköping, Sweden
| | - Emanuela Olivieri
- grid.419583.20000 0004 1757 1598Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Strada Campeggi, 59/61, 27100 Pavia, Italy
| | - Davide Sassera
- grid.8982.b0000 0004 1762 5736Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Emma Östlund
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Anna Omazic
- grid.419788.b0000 0001 2166 9211Department of Chemistry, Environment, and Feed Hygiene, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Debora Perissinotto
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| | - Robert Söderlund
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute (SVA), 751 89 Uppsala, Sweden
| |
Collapse
|
3
|
Yang SGNDS, Souza DDSE, Santiago ACDS, Silva RBS, Melo MAD, Souza EARD, Labruna MB, Horta MC, Oliveira JBD. Rickettsial infection in free-ranging capybaras (Hydrochoerus hydrochaeris) and their ticks (Acari, Ixodidae) in the Caatinga and Atlantic forest biomes, Northeastern Brazil. Vet Parasitol Reg Stud Reports 2021; 26:100649. [PMID: 34879960 DOI: 10.1016/j.vprsr.2021.100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/12/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022]
Abstract
Caatinga and Atlantic Forest are Brazilian biomes threatened by anthropogenic disturbances, which are a serious threat to biodiversity and favor the emergence of zoonotic pathogens. Capybara populations are increasingly present in urban and rural areas due to the loss of their natural habitats. There are no studies on the rickettsial infection in these rodents in Northeastern Brazil, although there are case records of Brazilian Spotted Fever (BSF) in this region. In this context, we evaluated rickettsial infection in capybaras and their ticks in four areas of the Atlantic Forest and Caatinga biomes in Northeastern Brazil. Blood sera from 21 capybaras were tested by indirect immunofluorescence assay (IFA) using Rickettsia rickettsii, R. parkeri, and R. amblyommatis antigens. Blood samples and ticks (Amblyomma sp., Amblyomma dubitatum and Amblyomma sculptum) were tested by PCR, targeting a fragment of the rickettsial gltA gene and R. bellii primers. Overall, 15 out of 21 capybaras (71.4%) reacted positively (titer ≥64) to at least one of the three Rickettsia antigens tested, with final titers ranging from 64 to 1024. No rickettsial DNA was found in capybara blood samples. Rickettsial DNA was detected in 22 of 31 adult tick pools using gltA gene, being all nine pools of A. sculptum and 16 of the 19 of A. dubitatum, but all samples were negative to R. bellii specific primers. All attempts to sequence the amplicon were unsuccessful, indicating a possible low rickettsial load in the tick samples. The present study reports for the first time the serological evidence of Rickettsia spp. infection in free-ranging capybaras and suggest the rickettsial infection in A. sculptum and A. dubitatum in the Caatinga and Atlantic Forest biomes in Northeastern Brazil.
Collapse
Affiliation(s)
| | - Dênisson da Silva E Souza
- Programa de Pós-Graduação em Biociência Animal, Universidade Federal Rural de Pernambuco, Pernambuco, Brazil
| | - Ana Cláudia da Silva Santiago
- Laboratório de Parasitologia, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Pernambuco, Brazil
| | - Raizza Barros Sousa Silva
- Laboratório de Biologia Molecular do Semiárido, Centro de Saúde e Tecnologia Rural, Universidade Federal de Campina Grande (UFCG), Paraíba, Brazil
| | - Márcia Almeida de Melo
- Laboratório de Biologia Molecular do Semiárido, Centro de Saúde e Tecnologia Rural, Universidade Federal de Campina Grande (UFCG), Paraíba, Brazil
| | - Eline Almeida Rodrigues de Souza
- Programa de Pós-Graduação em Biociência Animal, Universidade Federal Rural de Pernambuco, Pernambuco, Brazil; Laboratório de Doenças Parasitárias, Universidade Federal do Vale do São Francisco, Pernambuco, Brazil
| | - Marcelo Bahia Labruna
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Mauricio Claudio Horta
- Programa de Pós-Graduação em Biociência Animal, Universidade Federal Rural de Pernambuco, Pernambuco, Brazil; Laboratório de Doenças Parasitárias, Universidade Federal do Vale do São Francisco, Pernambuco, Brazil
| | - Jaqueline Bianque de Oliveira
- Programa de Pós-Graduação em Biociência Animal, Universidade Federal Rural de Pernambuco, Pernambuco, Brazil; Laboratório de Parasitologia, Departamento de Biologia, Universidade Federal Rural de Pernambuco, Pernambuco, Brazil; Programa de Educação Tutorial do Bacharelado em Ciências Biológicas, Universidade Federal Rural de Pernambuco, Pernambuco, Brazil.
| |
Collapse
|
4
|
Tyagi K, Tyagi I, Kumar V. Interspecific variation and functional traits of the gut microbiome in spiders from the wild: The largest effort so far. PLoS One 2021; 16:e0251790. [PMID: 34288947 PMCID: PMC8294503 DOI: 10.1371/journal.pone.0251790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022] Open
Abstract
Spiders being one of the most diverse group in phylum arthropod are of great importance due to their role as predators, silk producer, and in medicinal applications. Spiders in prey-predator relationships play a crucial role in balancing the food-chain of any ecosystem; therefore it is essential to characterize the gut microbiota of spiders collected from natural environments. In the present work, the largest effort so far has been made to characterize the gut microbiota of 35 spider species belonging to four different families using 16S amplicon targeting sequencing. Further, we compared the gut microbiota composition including endosymbiont abundance in spider species collected from different geographical locations. The results obtained revealed the presence of genera like Acinetobacter (15%), V7clade (9%), Wolbachia (8%), Pseudomonas (5%), Bacillus (6%). Although comparative analysis revealed that the gut bacterial composition in all the spider families has a similar pattern, in terms of community richness and evenness. The bacterial diversity in the spider family, Lycosidae are more diverse than in Salticidae, Tetragnathidae and Araneidae. Furthermore, it was observed that the abundance of endosymbiont genera, i.e. Wolbachia and Rickettsia, leads to shift in the abundance of other bacterial taxa and may cause sexual alterations in spider species. Moreover, predicted functional analysis based on PICRUSt2 reveals that gut microbiota of spider species were involved in functions like metabolism of carbohydrates, cofactors and vitamins, amino acids; biosynthesis of organic compounds, fatty acids, lipids etc. Based on the results obtained, it can be said that different locations do not correlate with community composition of gut microbiota in spider species collected from natural environments.
Collapse
Affiliation(s)
- Kaomud Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| | - Vikas Kumar
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, Kolkata, India
| |
Collapse
|
5
|
Getange D, Bargul JL, Kanduma E, Collins M, Bodha B, Denge D, Chiuya T, Githaka N, Younan M, Fèvre EM, Bell-Sakyi L, Villinger J. Ticks and Tick-Borne Pathogens Associated with Dromedary Camels ( Camelus dromedarius) in Northern Kenya. Microorganisms 2021; 9:1414. [PMID: 34209060 PMCID: PMC8306667 DOI: 10.3390/microorganisms9071414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Ticks and tick-borne pathogens (TBPs) are major constraints to camel health and production, yet epidemiological data on their diversity and impact on dromedary camels remain limited. We surveyed the diversity of ticks and TBPs associated with camels and co-grazing sheep at 12 sites in Marsabit County, northern Kenya. We screened blood and ticks (858 pools) from 296 camels and 77 sheep for bacterial and protozoan TBPs by high-resolution melting analysis and sequencing of PCR products. Hyalomma (75.7%), Amblyomma (17.6%) and Rhipicephalus (6.7%) spp. ticks were morphologically identified and confirmed by molecular analyses. We detected TBP DNA in 80.1% of blood samples from 296 healthy camels. "Candidatus Anaplasma camelii", "Candidatus Ehrlichia regneryi" and Coxiella burnetii were detected in both camels and associated ticks, and Ehrlichia chaffeensis, Rickettsia africae, Rickettsia aeschlimannii and Coxiella endosymbionts were detected in camel ticks. We also detected Ehrlichia ruminantium, which is responsible for heartwater disease in ruminants, in Amblyomma ticks infesting camels and sheep and in sheep blood, indicating its endemicity in Marsabit. Our findings also suggest that camels and/or the ticks infesting them are disease reservoirs of zoonotic Q fever (C. burnetii), ehrlichiosis (E. chaffeensis) and rickettsiosis (R. africae), which pose public health threats to pastoralist communities.
Collapse
Affiliation(s)
- Dennis Getange
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (D.G.); (T.C.)
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (D.G.); (T.C.)
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
| | - Esther Kanduma
- Department of Biochemistry, School of Medicine, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Marisol Collins
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (E.M.F.); (L.B.-S.)
| | - Boku Bodha
- Directorate of Veterinary Services, County Government of Marsabit, Marsabit P.O. Box 384-60500, Kenya; (B.B.); (D.D.)
| | - Diba Denge
- Directorate of Veterinary Services, County Government of Marsabit, Marsabit P.O. Box 384-60500, Kenya; (B.B.); (D.D.)
| | - Tatenda Chiuya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (D.G.); (T.C.)
| | - Naftaly Githaka
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya;
| | - Mario Younan
- Food and Agriculture Organization of the United Nations (FAO), Programme & Operational Support to Syria Crisis, UN cross-border hub, Gaziantep 27010, Turkey;
| | - Eric M. Fèvre
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (E.M.F.); (L.B.-S.)
- International Livestock Research Institute, Nairobi P.O. Box 30709-00100, Kenya;
| | - Lesley Bell-Sakyi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK; (M.C.); (E.M.F.); (L.B.-S.)
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi P.O. Box 30772-00100, Kenya; (D.G.); (T.C.)
| |
Collapse
|
6
|
Hoffmann A, Fingerle V, Noll M. Analysis of Tick Surface Decontamination Methods. Microorganisms 2020; 8:microorganisms8070987. [PMID: 32630152 PMCID: PMC7409031 DOI: 10.3390/microorganisms8070987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 11/23/2022] Open
Abstract
Various microbial pathogens have been found in ticks such as Ixodes ricinus. However, most studies assessed tick microbiomes without prior decontamination of the tick surface, which may alter the results and mislead conclusions regarding the composition of the tick-borne microbiome. The aim of this study was to test four different decontamination methods, namely (i.) 70% ethanol, (ii.) DNA Away, (iii.) 5% sodium hypochlorite and (iv.) Reactive Skin Decontamination Lotion (RSDL), which have been previously reported for tick surface and animal or human skin decontamination. To test the efficiency of decontamination, we contaminated each tick with a defined mixture of Escherichia coli, Micrococcus luteus, Pseudomonas fluorescens, dog saliva and human sweat. No contamination was used as a negative control, and for a positive control, a no decontamination strategy was carried out. After nucleic acid extraction, the recovery rate of contaminants was determined for RNA and DNA samples by qPCR and tick-borne microbiome analyses by bacterial 16S rRNA and 16S rRNA gene amplicon sequencing. Ticks treated with 5% sodium hypochlorite revealed the lowest number of contaminants followed by DNA Away, RSDL and 70% ethanol. Moreover, tick microbiomes after 5% sodium hypochlorite decontamination clustered with negative controls. Therefore, the efficiency of decontamination was optimal with 5% sodium hypochlorite and is recommended for upcoming studies to address the unbiased detection of tick-borne pathogens.
Collapse
Affiliation(s)
- Angeline Hoffmann
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany;
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority (LGL), National Reference Center for Borrelia, 85764 Oberschleißheim, Germany;
| | - Matthias Noll
- Institute for Bioanalysis, Department of Applied Sciences, Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany;
- Correspondence: ; Tel.: +49-9561-317-645
| |
Collapse
|
7
|
Bacterial diversity obtained by culturable approaches in the gut of Glossina pallidipes population from a non sleeping sickness focus in Tanzania: preliminary results. BMC Microbiol 2018; 18:164. [PMID: 30470192 PMCID: PMC6251091 DOI: 10.1186/s12866-018-1288-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Glossina pallidipes is a haematophagous insect that serves as a cyclic transmitter of trypanosomes causing African Trypanosomiasis (AT). To fully assess the role of G. pallidipes in the epidemiology of AT, especially the human form of the disease (HAT), it is essential to know the microbial diversity inhabiting the gut of natural fly populations. This study aimed to examine the diversity of G. pallidipes fly gut bacteria by culture-dependent approaches. RESULTS 113 bacterial isolates were obtained from aerobic and anaerobic microorganisms originating from the gut of G. pallidipes. 16S rDNA of each isolate was PCR amplified and sequenced. The overall majority of identified bacteria belonged in descending order to the Firmicutes (86.6%), Actinobacteria (7.6%), Proteobacteria (5.5%)and Bacteroidetes (0.3%). Diversity of Firmicutes was found higher when enrichments and isolation were performed under anaerobic conditions than aerobic ones. Experiments conducted in the absence of oxygen (anaerobiosis) led to the isolation of bacteria pertaining to four phyla (83% Firmicutes, 15% Actinobacteria, 1% Proteobacteria and 0.5% Bacteroidetes, whereas those conducted in the presence of oxygen (aerobiosis) led to the isolation of bacteria affiliated to two phyla only (90% Firmicutes and 10% Proteobacteria). Phylogenetic analyses placed these isolates into 11 genera namely Bacillus, Acinetobacter, Mesorhizobium, Paracoccus, Microbacterium, Micrococcus, Arthrobacter, Corynobacterium, Curtobacterium, Vagococcus and Dietzia spp.which are known to be either facultative anaerobes, aerobes, or even microaerobes. CONCLUSION This study shows that G. pallidipes fly gut is an environmental reservoir for a vast number of bacterial species, which are likely to be important for ecological microbial well being of the fly and possibly on differing vectorial competence and refractoriness against AT epidemiology.
Collapse
|
8
|
Lasek R, Szuplewska M, Mitura M, Decewicz P, Chmielowska C, Pawłot A, Sentkowska D, Czarnecki J, Bartosik D. Genome Structure of the Opportunistic Pathogen Paracoccus yeei ( Alphaproteobacteria) and Identification of Putative Virulence Factors. Front Microbiol 2018; 9:2553. [PMID: 30410477 PMCID: PMC6209633 DOI: 10.3389/fmicb.2018.02553] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Bacteria of the genus Paracoccus are common components of the microbiomes of many naturally- and anthropogenically shaped environments. One species, Paracoccus yeei, is unique within the genus because it is associated with opportunistic human infections. Therefore, strains of P. yeei may serve as an interesting model to study the transition from a saprophytic to a pathogenic lifestyle in environmental bacteria. Unfortunately, knowledge concerning the biology, genetics and genomic content of P. yeei is fragmentary; also the mechanisms of pathogenicity of this bacterium remain unclear. In this study we provide the first insight into the genome composition and metabolic potential of a clinical isolate, P. yeei CCUG 32053. This strain has a multipartite genome (4,632,079 bp) composed of a circular chromosome plus eight extrachromosomal replicons pYEE1–8: 3 chromids and 5 plasmids, with a total size of 1,247,173 bp. The genome has been significantly shaped by the acquisition of genomic islands, prophages (Myoviridae and Siphoviridae phage families) and numerous insertion sequences (ISs) representing seven IS families. Detailed comparative analysis with other complete genomic sequences of Paracoccus spp. (including P. yeei FDAARGOS_252 and TT13, as well as non-pathogenic strains of other species in this genus) enabled us to identify P. yeei species-specific genes and to predict putative determinants of virulence. This is the first attempt to identify pathoadaptive genetic information of P. yeei and to estimate the role of the mobilome in the evolution of pathogenicity in this species.
Collapse
Affiliation(s)
- Robert Lasek
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Szuplewska
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Monika Mitura
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Przemysław Decewicz
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Cora Chmielowska
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Pawłot
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota Sentkowska
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jakub Czarnecki
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
9
|
Omondi D, Masiga DK, Fielding BC, Kariuki E, Ajamma YU, Mwamuye MM, Ouso DO, Villinger J. Molecular Detection of Tick-Borne Pathogen Diversities in Ticks from Livestock and Reptiles along the Shores and Adjacent Islands of Lake Victoria and Lake Baringo, Kenya. Front Vet Sci 2017; 4:73. [PMID: 28620610 PMCID: PMC5451513 DOI: 10.3389/fvets.2017.00073] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/27/2017] [Indexed: 11/25/2022] Open
Abstract
Although diverse tick-borne pathogens (TBPs) are endemic to East Africa, with recognized impact on human and livestock health, their diversity and specific interactions with tick and vertebrate host species remain poorly understood in the region. In particular, the role of reptiles in TBP epidemiology remains unknown, despite having been implicated with TBPs of livestock among exported tortoises and lizards. Understanding TBP ecologies, and the potential role of common reptiles, is critical for the development of targeted transmission control strategies for these neglected tropical disease agents. During the wet months (April-May; October-December) of 2012-2013, we surveyed TBP diversity among 4,126 ticks parasitizing livestock and reptiles at homesteads along the shores and islands of Lake Baringo and Lake Victoria in Kenya, regions endemic to diverse neglected tick-borne diseases. After morphological identification of 13 distinct Rhipicephalus, Amblyomma, and Hyalomma tick species, ticks were pooled (≤8 individuals) by species, host, sampling site, and collection date into 585 tick pools. By supplementing previously established molecular assays for TBP detection with high-resolution melting analysis of PCR products before sequencing, we identified high frequencies of potential disease agents of ehrlichiosis (12.48% Ehrlichia ruminantium, 9.06% Ehrlichia canis), anaplasmosis (6.32% Anaplasma ovis, 14.36% Anaplasma platys, and 3.08% Anaplasma bovis,), and rickettsiosis (6.15% Rickettsia africae, 2.22% Rickettsia aeschlimannii, 4.27% Rickettsia rhipicephali, and 4.95% Rickettsia spp.), as well as Paracoccus sp. and apicomplexan hemoparasites (0.51% Theileria sp., 2.56% Hepatozoon fitzsimonsi, and 1.37% Babesia caballi) among tick pools. Notably, we identified E. ruminantium in both Amblyomma and Rhipicephalus pools of ticks sampled from livestock in both study areas as well as in Amblyomma falsomarmoreum (66.7%) and Amblyomma nuttalli (100%) sampled from tortoises and Amblyomma sparsum (63.6%) sampled in both cattle and tortoises at Lake Baringo. Similarly, we identified E. canis in rhipicephaline ticks sampled from livestock and dogs in both regions and Amblyomma latum (75%) sampled from monitor lizards at Lake Victoria. These novel tick-host-pathogen interactions have implications on the risk of disease transmission to humans and domestic animals and highlight the complexity of TBP ecologies, which may include reptiles as reservoir species, in sub-Saharan Africa.
Collapse
Affiliation(s)
- David Omondi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- University of Western Cape, Bellville, South Africa
- Egerton University, Egerton, Kenya
| | - Daniel K. Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | | | | | - Yvonne Ukamaka Ajamma
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Micky M. Mwamuye
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Daniel O. Ouso
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Jandouwe Villinger
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
10
|
Saurav K, Burgsdorf I, Teta R, Esposito G, Bar-Shalom R, Costantino V, Steindler L. Isolation of MarineParacoccussp. Ss63 from the SpongeSarcotragussp. and Characterization of its Quorum-Sensing Chemical-Signaling Molecules by LC-MS/MS Analysis. Isr J Chem 2016. [DOI: 10.1002/ijch.201600003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Tracking human sewage microbiome in a municipal wastewater treatment plant. Appl Microbiol Biotechnol 2013; 98:3317-26. [DOI: 10.1007/s00253-013-5402-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 10/25/2022]
|
12
|
Coiffier G, Gougeon A, Albert JD, Le Bars H. [Arthritis due to Paracoccus yeei]. Med Mal Infect 2013; 43:254-5. [PMID: 23751881 DOI: 10.1016/j.medmal.2013.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/04/2013] [Accepted: 04/25/2013] [Indexed: 11/30/2022]
|