1
|
Tu H, Gao Q, Zhou Y, Peng L, Wu D, Zhang D, Yang J. The role of sirtuins in intervertebral disc degeneration: Mechanisms and therapeutic potential. J Cell Physiol 2024; 239:e31328. [PMID: 38922861 DOI: 10.1002/jcp.31328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the main causes of low back pain, which affects the patients' quality of life and health and imposes a significant socioeconomic burden. Despite great efforts made by researchers to understand the pathogenesis of IDD, effective strategies for preventing and treating this disease remain very limited. Sirtuins are a highly conserved family of (NAD+)-dependent deacetylases in mammals that are involved in a variety of metabolic processes in vivo. In recent years, sirtuins have attracted much attention owing to their regulatory roles in IDD on physiological activities such as inflammation, apoptosis, autophagy, aging, oxidative stress, and mitochondrial function. At the same time, many studies have explored the therapeutic effects of sirtuins-targeting activators or micro-RNA in IDD. This review summarizes the molecular pathways of sirtuins involved in IDD, and summarizes the therapeutic role of activators or micro-RNA targeting Sirtuins in IDD, as well as the current limitations and challenges, with a view to provide possible solutions for the treatment of IDD.
Collapse
Affiliation(s)
- Heng Tu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qian Gao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yumeng Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Peng
- Key Laboratory of Bio-Resource & Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Hao Y, Zhu G, Yu L, Ren Z, Zhou W, Zhang P, Lian X. FOXO3-Activated HOTTIP Sequesters miR-615-3p away from COL2A1 to Mitigate Intervertebral Disc Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:280-295. [PMID: 37981220 DOI: 10.1016/j.ajpath.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/15/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
In this study, knockout of FOXO3 was found to impair intervertebral disc maturation and homeostasis in postnatal mice as well as facilitating extracellular matrix degradation. RNA sequencing can uncover disease-related gene expression and investigate disease pathophysiology. High-throughput transcriptome sequencing and experimental validations were used to identify the essential gene and mechanism involved in intervertebral disc degeneration (IDD). Nucleus pulposus (NP) tissue samples were collected from the mice with conditional knockout of FOXO3 (FOXO3 KO) for high-throughput sequencing, followed by screening of differentially expressed lncRNAs and mRNAs. The mRNAs were subjected to GO and KEGG enrichment analyses. Interactions among FOXO3, HOTTIP, miR-615-3p, and COL2A1 were analyzed. NP cells were subjected to a series of mimics, inhibitors, overexpression plasmids, and shRNAs to validate the mechanisms of FOXO3 in controlling HOTTIP/miR-615-3p/COL2A1 in IDD. Mechanistically, FOXO3 transcriptionally activated HOTTIP, facilitated the competitive HOTTIP binding to miR-615-3p, and increased the expression of the miR-615-3p target gene COL2A1. Thus, NP cell proliferation was induced, cell apoptosis was diminished, resulting in delayed development of IDD. Based on these data, the transcription factor FOXO3 may decrease miR-615-3p binding to COL2A1 and up-regulate COL2A1 expression by activating HOTTIP transcription, which in turn inhibits NP cell apoptosis and promotes its proliferation, to prevent the degradation of intervertebral disc matrix and maintain the normal physiological function of intervertebral disc, thereby preventing the occurrence and development of IDD.
Collapse
Affiliation(s)
- Yingjie Hao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Guangduo Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhinan Ren
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Panke Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Lian
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Whittal MC, Poynter SJ, Samms K, Briar KJ, Sinopoli SI, Millecamps M, Stone LS, DeWitte-Orr SJ, Gregory DE. TAK-242 treatment and its effect on mechanical properties and gene expression associated with IVD degeneration in SPARC-null mice. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:2801-2811. [PMID: 35816198 DOI: 10.1007/s00586-022-07310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/09/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE Intervertebral disc (IVD) degeneration is accompanied by mechanical and gene expression changes to IVDs. SPARC-null mice display accelerated IVD degeneration, and treatment with (toll-like receptor 4 (TLR4) inhibitor) TAK-242 decreases proinflammatory cytokines and pain. This study examined if chronic TAK-242 treatment impacts mechanical properties and gene expression associated with IVD degeneration in SPARC-null mice. METHODS Male and female SPARC-null and WT mice aged 7-9 months were given intraperitoneal injections with TAK-242 or an equivalent saline vehicle for 8 weeks (3x/per week, M-W-F). L2-L5 spinal segments were tested in cyclic axial tension and compression. Gene expression analysis (RT-qPCR) was performed on male IVD tissues using Qiagen RT2 PCR arrays. RESULTS SPARC-null mice had decreased NZ length (p = 0.001) and increased NZ stiffness (p < 0.001) compared to WT mice. NZ length was not impacted by TAK-242 treatment (p = 0.967) despite increased hysteresis energy (p = 0.024). Tensile stiffness was greater in SPARC-null mice (p = 0.018), and compressive (p < 0.001) stiffness was reduced from TAK-242 treatment in WT but not SPARC-null mice (p = 0.391). Gene expression analysis found upregulation of 13 ECM and 5 inflammatory genes in SPARC-null mice, and downregulation of 2 inflammatory genes after TAK-242 treatment. CONCLUSIONS TAK-242 had limited impacts on SPARC-null mechanical properties and did not attenuate NZ mechanical changes associated with IVD degeneration. Expression analysis revealed an increase in ECM and inflammatory gene expression in SPARCnull mice with a reduction in inflammatory expression due to TAK-242 treatment. This study provides insight into the role of TLR4 in SPARC-null mediated IVD degeneration.
Collapse
Affiliation(s)
- Mitchel C Whittal
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada
| | - Sarah J Poynter
- Department of Health Sciences, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada
| | - Kayla Samms
- Department of Health Sciences, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada
| | - K Josh Briar
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada
| | - Sabrina I Sinopoli
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada
| | - Magali Millecamps
- McGill University, 845 Sherbrooke Street West, Montréal, QC, H3A 0G4, Canada
| | - Laura S Stone
- McGill University, 845 Sherbrooke Street West, Montréal, QC, H3A 0G4, Canada
- University of Minnesota, 321 Church Street SE, Minneapolis, MN, 55455, USA
| | - Stephanie J DeWitte-Orr
- Department of Health Sciences, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada
| | - Diane E Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada.
- Department of Health Sciences, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
4
|
Single-Cell RNA-Seq Analysis of Cells from Degenerating and Non-Degenerating Intervertebral Discs from the Same Individual Reveals New Biomarkers for Intervertebral Disc Degeneration. Int J Mol Sci 2022; 23:ijms23073993. [PMID: 35409356 PMCID: PMC8999935 DOI: 10.3390/ijms23073993] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
In this study, we used single-cell transcriptomic analysis to identify new specific biomarkers for nucleus pulposus (NP) and inner annulus fibrosis (iAF) cells, and to define cell populations within non-degenerating (nD) and degenerating (D) human intervertebral discs (IVD) of the same individual. Cluster analysis based on differential gene expression delineated 14 cell clusters. Gene expression profiles at single-cell resolution revealed the potential functional differences linked to degeneration, and among NP and iAF subpopulations. GO and KEGG analyses discovered molecular functions, biological processes, and transcription factors linked to cell type and degeneration state. We propose two lists of biomarkers, one as specific cell type, including C2orf40, MGP, MSMP, CD44, EIF1, LGALS1, RGCC, EPYC, HILPDA, ACAN, MT1F, CHI3L1, ID1, ID3 and TMED2. The second list proposes predictive IVD degeneration genes, including MT1G, SPP1, HMGA1, FN1, FBXO2, SPARC, VIM, CTGF, MGST1, TAF1D, CAPS, SPTSSB, S100A1, CHI3L2, PLA2G2A, TNRSF11B, FGFBP2, MGP, SLPI, DCN, MT-ND2, MTCYB, ADIRF, FRZB, CLEC3A, UPP1, S100A2, PRG4, COL2A1, SOD2 and MT2A. Protein and mRNA expression of MGST1, vimentin, SOD2 and SYF2 (p29) genes validated our scRNA-seq findings. Our data provide new insights into disc cells phenotypes and biomarkers of IVD degeneration that could improve diagnostic and therapeutic options.
Collapse
|
5
|
The Role of Oxidative Stress in Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2166817. [PMID: 35069969 PMCID: PMC8769842 DOI: 10.1155/2022/2166817] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/21/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022]
Abstract
Intervertebral disc degeneration is a very common type of degenerative disease causing severe socioeconomic impact, as well as a major cause of discogenic low back pain and herniated discs, placing a heavy burden on patients and the clinicians who treat them. IDD is known to be associating with a complex process involving in extracellular matrix and cellular damage, and in recent years, there is increasing evidence that oxidative stress is an important activation mechanism of IDD and that reactive oxygen and reactive nitrogen species regulate matrix metabolism, proinflammatory phenotype, autophagy and senescence in intervertebral disc cells, apoptosis, autophagy, and senescence. Despite the tremendous efforts of researchers within the field of IDD pathogenesis, the proven strategies to prevent and treat this disease are still very limited. Up to now, several antioxidants have been proved to be effective for alleviating IDD. In this article, we discussed that oxidative stress accelerates disc degeneration by influencing aging, inflammation, autophagy, and DNA methylation, and summarize some antioxidant therapeutic measures for IDD, indicating that antioxidant therapy for disc degeneration holds excellent promise.
Collapse
|
6
|
The Role of Polymorphisms in Collagen-Encoding Genes in Intervertebral Disc Degeneration. Biomolecules 2021; 11:biom11091279. [PMID: 34572492 PMCID: PMC8465916 DOI: 10.3390/biom11091279] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
(1) Background: The purpose of this review is to analyze domestic and foreign studies on the role of collagen-encoding genes polymorphism in the development of intervertebral discs (IVDs) degeneration in humans. (2) Methods: We have carried out a search for full-text articles published in e-Library, PubMed, Oxford Press, Clinical Case, Springer, Elsevier and Google Scholar databases. The search was carried out using keywords and their combinations. The search depth was 5 years (2016–2021). In addition, this review includes articles of historical interest. Despite an extensive search, it is possible that we might have missed some studies published in recent years. (3) Results: According to the data of genome-wide and associative genetic studies, the following candidate genes that play a role in the biology of IVDs and the genetic basis of the processes of collagen degeneration of the annulus fibrosus and nucleus pulposus of IVDs in humans are of the greatest interest to researchers: COL1A1, COL2A1, COL9A2, COL9A3, COL11A1 and COL11A2. In addition, the role of genes COL1A2, COL9A1 and others is being actively studied. (4) Conclusions: In our review, we summarized and systematized the available information on the role of genetic factors in IVD collagen fibers turnover and also focused on the functions of different types of collagen present in the IVD. Understanding the etiology of impaired collagen formation can allow doctors to prescribe pathogenetically-based treatment, achieving the most effective results.
Collapse
|
7
|
Wen T, Wang H, Li Y, Lin Y, Zhao S, Liu J, Chen B. Bone mesenchymal stem cell-derived extracellular vesicles promote the repair of intervertebral disc degeneration by transferring microRNA-199a. Cell Cycle 2021; 20:256-270. [PMID: 33499725 DOI: 10.1080/15384101.2020.1863682] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) secreted by bone marrow mesenchymal stem cells (BMSCs) protect intervertebral disc degeneration (IDD) by regulating nucleus pulposus cell (NPC) apoptosis. But the mechanism of BMSCs-EVs-microRNA (miR)-199a in IDD remains unclear. In this study, after the acquisition and identification of BMSCs and BMSCs-EVs, IDD mouse model was established and treated with BMSCs-EVs. The pathological changes of NPCs, positive expression of MMP-2, MMP-6 and TIMP1, and the senescence and apoptosis of NPCs were evaluated. Microarray analysis was employed to analyze the differentially expressed miRs and genes after EV treatment. NPCs were treated with EVs/miR-199a/TGF-β agonist SRI-011381. The positive expression of col II and Aggrecan was assessed. The target gene and downstream pathway of miR-199a were analyzed. In vivo experiment, after BMSCs-EV treatment, MMP-2, MMP-6, TIMP1 and TUNEL-positive cells in IDD mice were decreased, and miR-199a was increased. In vitro experiments, the expression of col Ⅱ and Aggrecan, SA-β gal positive cells and apoptosis rate of NPCs were decreased after EV intervention. The protective effect of BMSCs-EVs on NPCs was impaired by reducing miR-199a carried by EVs. miR-199a could target GREM1 to inactivate the TGF-β pathway. miR-199a carried by BMSCs-EVs promotes IDD repair by targeting GREM1 and downregulating the TGF-β pathway. Our work confers a promising therapeutic strategy for IDD.
Collapse
Affiliation(s)
- Tao Wen
- Department of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine , Guangzhou, Guangdong, China
| | - Hongshen Wang
- Department of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine , Guangzhou, Guangdong, China
| | - Yongjin Li
- Department of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine , Guangzhou, Guangdong, China
| | - Yongpeng Lin
- Department of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine , Guangzhou, Guangdong, China
| | - Shuai Zhao
- Department of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine , Guangzhou, Guangdong, China
| | - Jinggong Liu
- Department of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine , Guangzhou, Guangdong, China
| | - Bolai Chen
- Department of Spine Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine , Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Chang H, Yang X, You K, Jiang M, Cai F, Zhang Y, Liu L, Liu H, Liu X. Integrating multiple microarray dataset analysis and machine learning methods to reveal the key genes and regulatory mechanisms underlying human intervertebral disc degeneration. PeerJ 2020; 8:e10120. [PMID: 33083145 PMCID: PMC7566771 DOI: 10.7717/peerj.10120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
Intervertebral disc degeneration (IDD), a major cause of lower back pain, has multiple contributing factors including genetics, environment, age, and loading history. Bioinformatics analysis has been extensively used to identify diagnostic biomarkers and therapeutic targets for IDD diagnosis and treatment. However, multiple microarray dataset analysis and machine learning methods have not been integrated. In this study, we downloaded the mRNA, microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA) expression profiles (GSE34095, GSE15227, GSE63492 GSE116726, GSE56081 and GSE67566) associated with IDD from the GEO database. Using differential expression analysis and recursive feature elimination, we extracted four optimal feature genes. We then used the support vector machine (SVM) to make a classification model with the four optimal feature genes. The ROC curve was used to evaluate the model's performance, and the expression profiles (GSE63492, GSE116726, GSE56081, and GSE67566) were used to construct a competitive endogenous RNA (ceRNA) regulatory network and explore the underlying mechanisms of the feature genes. We found that three miRNAs (hsa-miR-4728-5p, hsa-miR-5196-5p, and hsa-miR-185-5p) and three circRNAs (hsa_circRNA_100723, hsa_circRNA_104471, and hsa_circRNA_100750) were important regulators with more interactions than the other RNAs across the whole network. The expression level analysis of the three datasets revealed that BCAS4 and SCRG1 were key genes involved in IDD development. Ultimately, our study proposes a novel approach to determining reliable and effective targets in IDD diagnosis and treatment.
Collapse
Affiliation(s)
- Hongze Chang
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiaolong Yang
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Kemin You
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Mingwei Jiang
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Feng Cai
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Yan Zhang
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Liang Liu
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Hui Liu
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiaodong Liu
- Department of orthopedics, Shanghai Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
9
|
Upregulated Plant Homeodomain Finger Protein 6 Promotes Extracellular Matrix Degradation in Intervertebral Disc Degeneration Based on Microarray Analysis. Spine (Phila Pa 1976) 2020; 45:E1216-E1224. [PMID: 32453232 DOI: 10.1097/brs.0000000000003549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
STUDY DESIGN mRNA analysis. OBJECTIVE The aim of this study was to identify differentially expressed genes (DEGs) in disc degeneration, analyze the potential biological functions of DEGs, and screen for a new target to prevent the degeneration. SUMMARY OF BACKGROUND DATA Intervertebral disc degeneration (IDD) is an irreversible process and causes long-term heavy socioeconomic burdens. Existing and therapies under development are unable to prevent disc degeneration in a safe and effective manner. Therefore, elucidating the potential mechanism underlying degeneration and the development of new targets for IDD therapy are urgently required. METHODS Nucleus pulposus (NP) cells from mild and severe IDD (Ctrl and IDD groups) were separated, and DEGs of the two groups were identified with mRNA microarray analysis, followed by bioinformatics analysis.Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was performed to verify the microarray results. Gene over-expression and silencing technologies were used to study the role of plant homeodomain finger protein 6 (PHF6). qRT-PCR and western blot analyses were used to detect the expressions of collagen II (COL2), matrix metalloproteinases 13 (MMP13), and ADAM metallopeptidase with thrombospondin type 1 motif 4 (ADAMTS4). RESULTS The study identified 377 up- and 116 downregulated DEGs in NP cells from two groups. These DEGs were mainly involved in cellular and metabolic processes and enriched in immune system and nucleotide metabolism pathways. Upregulated PHF6, with the highest verified fold change, was significantly increased in the IDD group. Over-expressing PHF6 in Ctrl NP cells significantly inhibited the expression of COL2 and enhanced the expressions of MMP13 and ADAMTS4, whereas silencing PHF6 in IDD NP cells reversed such expression alterations. CONCLUSION Upregulated PHF6 caused IDD by promoting extracellular matrix degradation; therefore, PHF6 could be developed as a potential novel target to prevent the degeneration. Our DEG profiling of NP cells from IDD patients provided a database to identify the key genes involved in IDD. LEVEL OF EVIDENCE N/A.
Collapse
|
10
|
Fernandes LM, Khan NM, Trochez CM, Duan M, Diaz-Hernandez ME, Presciutti SM, Gibson G, Drissi H. Single-cell RNA-seq identifies unique transcriptional landscapes of human nucleus pulposus and annulus fibrosus cells. Sci Rep 2020; 10:15263. [PMID: 32943704 PMCID: PMC7499307 DOI: 10.1038/s41598-020-72261-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/19/2020] [Indexed: 12/29/2022] Open
Abstract
Intervertebral disc (IVD) disease (IDD) is a complex, multifactorial disease. While various aspects of IDD progression have been reported, the underlying molecular pathways and transcriptional networks that govern the maintenance of healthy nucleus pulposus (NP) and annulus fibrosus (AF) have not been fully elucidated. We defined the transcriptome map of healthy human IVD by performing single-cell RNA-sequencing (scRNA-seq) in primary AF and NP cells isolated from non-degenerated lumbar disc. Our systematic and comprehensive analyses revealed distinct genetic architecture of human NP and AF compartments and identified 2,196 differentially expressed genes. Gene enrichment analysis showed that SFRP1, BIRC5, CYTL1, ESM1 and CCNB2 genes were highly expressed in the AF cells; whereas, COL2A1, DSC3, COL9A3, COL11A1, and ANGPTL7 were mostly expressed in the NP cells. Further, functional annotation clustering analysis revealed the enrichment of receptor signaling pathways genes in AF cells, while NP cells showed high expression of genes related to the protein synthesis machinery. Subsequent interaction network analysis revealed a structured network of extracellular matrix genes in NP compartments. Our regulatory network analysis identified FOXM1 and KDM4E as signature transcription factor of AF and NP respectively, which might be involved in the regulation of core genes of AF and NP transcriptome.
Collapse
Affiliation(s)
- Lorenzo M Fernandes
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Nazir M Khan
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Camila M Trochez
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Meixue Duan
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Martha E Diaz-Hernandez
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Steven M Presciutti
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Greg Gibson
- Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, 30033, USA. .,Atlanta VA Medical Center, Decatur, GA, USA.
| |
Collapse
|
11
|
Wang Y, Dai G, Li L, Liu L, Jiang L, Li S, Liao S, Wang F, Du W, Li Y. Transcriptome signatures reveal candidate key genes in the whole blood of patients with lumbar disc prolapse. Exp Ther Med 2019; 18:4591-4602. [PMID: 31777557 PMCID: PMC6862187 DOI: 10.3892/etm.2019.8137] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate differentially expressed genes (DEGs) in whole blood (WB) obtained from patients with lumbar disc prolapse (LDP) and healthy volunteers. A total of 8 patients with LDP and 8 healthy volunteers were recruited. An Agilent SurePrint G3 human gene expression microarray 8×60 K was used to perform the microarray analyses. R was employed to identify DEGs, which were then subjected to bioinformatics analysis, including a Gene Ontology (GO) analysis, Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis and protein-protein interaction (PPI) network analysis. DEGs in the degenerative annulus fibrosis (AF) and nucleus pulposus (NP) compared with non-degenerative tissues were also identified based on microarray data and the intersections of the three were assessed. Furthermore, reverse transcription-quantitative (RT-q)PCR was performed to confirm the aberrant expression levels of selected DEGs in the WB of all subjects. A total of 161 DEGs between LDP patients and the healthy controls were identified (128 upregulated and 33 downregulated). These DEGs were enriched in 293 biological process, 36 cellular component and 21 molecular function GO terms, as well as in 24 KEGG pathways. The PPI network contained 4 submodules, and Toll-like receptor 4 had the highest degree centrality. A total of 22 DEGs were common to the three groups of DEGs. The RT-qPCR assay confirmed that the expression levels of cytochrome P450 family 27 subfamily A member 1, superoxide dismutase 2, protein disulfide isomerase family A member 4, FKBP prolyl isomerase 11 and ectonucleotide pyrophosphatase/phosphodiesterase 4 were significantly different between the patient group and the volunteer group. In conclusion, several genes were identified as potential biomarkers in WB that should be further explored in future studies to determine their potential application in the clinical treatment and diagnosis of LDP, and the present bioinformatics analysis revealed several GO terms, KEGG pathways and submodules of the PPI network that may be involved in LDP, although the exact mechanisms remain elusive.
Collapse
Affiliation(s)
- Yi Wang
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Guogang Dai
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Lengtao Li
- Postgraduate School, Chengdu Sport Institute, Chengdu, Sichuan 610041, P.R. China
| | - Lijuan Liu
- Postgraduate School, Chengdu Sport Institute, Chengdu, Sichuan 610041, P.R. China
| | - Ling Jiang
- College Hospital, Sichuan Agricultural University - Chengdu Campus, Chengdu, Sichuan 611130, P.R. China
| | - Shengwu Li
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Shichuan Liao
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Feng Wang
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Wanli Du
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Yuewen Li
- Cervicodynia/Omalgia/Lumbago/Sciatica Department, Sichuan Provincial Orthopedic Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
12
|
Teles Filho RV, Abe GDM, Daher MT. Genetic Influence in Disc Degeneration - Systematic Review of Literature. Rev Bras Ortop 2019; 55:131-138. [PMID: 32346187 PMCID: PMC7186076 DOI: 10.1055/s-0039-1692626] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Disc degeneration is a condition that compromises the intervertebral disc functions, which can lead to several important pathological processes, such as disc herniation and canal stenosis. Although its etiology is still unknown, more and more studies have demonstrated the preponderant role of genetic factors to the detriment of environmental factors. Aiming to review the current knowledge about the genes associated with intervertebral disc degeneration, we have performed a narrative review based on the medical literature in the English language from the last 10 years regarding this subject. We have concluded that several genes have been associated with disc degeneration in humans, including the genes for collagen I α-1 (
COL1A1
), collagen IX (
COL9A2
and
COL9A3
), collagen XI (
COL11A2
), interleukin 6 (
IL-6
), aggrecan (
AGC1
), vitamin D receptor (
VDR
), and matrix metalloproteinase 3 (
MMP-3)
, in addition to microRNAs. Therefore, the present review emphasizes the latest advancements in the association of genes with specific phenotypes of degenerated discs, single-nucleotide polymorphisms, heritage and genetic-environmental interactions in relation to disc degeneration to help future reviews regarding the genetic mechanisms underlying these processes.
Collapse
Affiliation(s)
- Ricardo Vieira Teles Filho
- Departamento de Ortopedia e Traumatologia, Faculdade de Medicina, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Guilherme de Matos Abe
- Departamento de Ortopedia e Traumatologia, Faculdade de Medicina, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Murilo Tavares Daher
- Departamento de Ortopedia e Traumatologia, Faculdade de Medicina, Universidade Federal de Goiás, Goiânia, GO, Brasil.,Centro de Reabilitação e Readaptação Dr Henrique Santillo, Goiânia, GO, Brasil
| |
Collapse
|
13
|
Schubert AK, Smink JJ, Arp M, Ringe J, Hegewald AA, Sittinger M. Quality Assessment of Surgical Disc Samples Discriminates Human Annulus Fibrosus and Nucleus Pulposus on Tissue and Molecular Level. Int J Mol Sci 2018; 19:ijms19061761. [PMID: 29899321 PMCID: PMC6032144 DOI: 10.3390/ijms19061761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/07/2023] Open
Abstract
A discrimination of the highly specialised annulus fibrosus (AF) and nucleus pulposus (NP) cells in the mature human intervertebral disc (IVD) is thus far still not possible in a reliable way. The aim of this study was to identify molecular markers that distinguish AF and NP cells in human disc tissue using microarray analysis as a screening tool. AF and NP samples were obtained from 28 cervical discs. First, all samples underwent quality sorting using two novel scoring systems for small-sized disc tissue samples including macroscopic, haptic and histological evaluation. Subsequently, samples with clear disc characteristics of either AF or NP that were free from impurities of foreign tissue (IVD score) and with low signs of disc degeneration on cellular level (DD score) were selected for GeneChip analysis (HGU1332P). The 11 AF and 9 NP samples showed distinctly different genome-wide transcriptomes. The majority of differentially expressed genes (DEGs) could be specifically assigned to the AF, whereas no DEG was exclusively expressed in the NP. Nevertheless, we identified 11 novel marker genes that clearly distinguished AF and NP, as confirmed by quantitative gene expression analysis. The novel established scoring systems and molecular markers showed the identity of AF and NP in disc starting material and are thus of great importance in the quality assurance of cell-based therapeutics in regenerative treatment of disc degeneration.
Collapse
Affiliation(s)
- Ann-Kathrin Schubert
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
- CO.DON AG, 14513 Teltow, Germany.
| | | | - Mirko Arp
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
| | - Jochen Ringe
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
| | - Aldemar A Hegewald
- Department of Neurosurgery, University Medical Center Mannheim, Heidelberg University, 68167 Mannheim, Germany.
- Department of Neurosurgery and Spine Surgery, Helios Baltic Sea Hospital Damp, 24351 Damp, Germany.
| | - Michael Sittinger
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, 13353 Berlin, Germany.
| |
Collapse
|
14
|
Riester SM, Lin Y, Wang W, Cong L, Ali AMM, Peck SH, Smith LJ, Currier BL, Clark M, Huddleston P, Krauss W, Yaszemski MJ, Morrey ME, Abdel MP, Bydon M, Qu W, Larson AN, van Wijnen AJ, Nassr A. RNA sequencing identifies gene regulatory networks controlling extracellular matrix synthesis in intervertebral disk tissues. J Orthop Res 2018; 36:1356-1369. [PMID: 29227558 PMCID: PMC5990467 DOI: 10.1002/jor.23834] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 12/04/2017] [Indexed: 02/04/2023]
Abstract
Degenerative disk disease of the spine is a major cause of back pain and disability. Optimization of regenerative medical therapies for degenerative disk disease requires a deep mechanistic understanding of the factors controlling the structural integrity of spinal tissues. In this investigation, we sought to identify candidate regulatory genes controlling extracellular matrix synthesis in spinal tissues. To achieve this goal we performed high throughput next generation RNA sequencing on 39 annulus fibrosus and 21 nucleus pulposus human tissue samples. Specimens were collected from patients undergoing surgical discectomy for the treatment of degenerative disk disease. Our studies identified associations between extracellular matrix genes, growth factors, and other important regulatory molecules. The fibrous matrix characteristic of annulus fibrosus was associated with expression of the growth factors platelet derived growth factor beta (PDGFB), vascular endothelial growth factor C (VEGFC), and fibroblast growth factor 9 (FGF9). Additionally we observed high expression of multiple signaling proteins involved in the NOTCH and WNT signaling cascades. Nucleus pulposus extracellular matrix related genes were associated with the expression of numerous diffusible growth factors largely associated with the transforming growth signaling cascade, including transforming factor alpha (TGFA), inhibin alpha (INHA), inhibin beta A (INHBA), bone morphogenetic proteins (BMP2, BMP6), and others. CLINICAL SIGNIFICANCE this investigation provides important data on extracellular matrix gene regulatory networks in disk tissues. This information can be used to optimize pharmacologic, stem cell, and tissue engineering strategies for regeneration of the intervertebral disk and the treatment of back pain. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1356-1369, 2018.
Collapse
Affiliation(s)
- Scott M. Riester
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Occupational and Environmental Medicine, HealthPartners, MN, USA
| | - Yang Lin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wei Wang
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Lin Cong
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, The First Hospital of China Medical University, No.155, Nanjing Bei Street, Shenyang, 110001, P. R. China
| | | | - Sun H. Peck
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Lachlan J. Smith
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | | | - Michelle Clark
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Paul Huddleston
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - William Krauss
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | | | - Mark E. Morrey
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Mohamad Bydon
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA
| | - Wenchun Qu
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology Division of Pain Medicine, Mayo Clinic, Rochester, MN, USA
- Spine Center, Mayo Clinic, Rochester, MN, USA
| | - A. Noelle Larson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Ahmad Nassr
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
Aker L, Ghannam M, Alzuabi MA, Jumah F, Alkhdour SM, Mansour S, Samara A, Cronk K, Massengale J, Holsapple J, Adeeb N, Oskouian RJ, Tubbs RS. Molecular Biology and Interactions in Intervertebral Disc Development, Homeostasis, and Degeneration, with Emphasis on Future Therapies: A Systematic Review. ACTA ACUST UNITED AC 2017. [DOI: 10.26632/ss.3.2017.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Deng Y, Tan XT, Wu Q, Wang X. Correlations Between COL2A and Aggrecan Genetic Polymorphisms and the Risk and Clinicopathological Features of Intervertebral Disc Degeneration in a Chinese Han Population: A Case-Control Study. Genet Test Mol Biomarkers 2016; 21:108-115. [PMID: 27991836 DOI: 10.1089/gtmb.2016.0256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES This case-control study was designed to evaluate the association of three COL2A1 single nucleotide polymorphism (SNPs) (rs1793953, rs2276454, and rs1793937) and Aggrecan variable number of tandem repeat (VNTR) polymorphisms with the risk and clinicopathological features of intervertebral disc degeneration (IVDD) in a Chinese Han population. MATERIALS AND METHODS Data from 295 IVDD patients (case group) and 324 healthy volunteers (control group) were collected between January 2012 and December 2014. Magnetic resonance examinations were conducted on all included subjects. The frequency distributions of the COL2A1 and Aggrecan polymorphisms were detected using direct sequencing and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, respectively. RESULTS The genotype and allele frequencies of the COL2A1 genetic polymorphisms (rs1793953 and rs2276454) and the Aggrecan VNTR polymorphisms differed significantly between the case group and the control group (all p < 0.05). The haplotype analysis indicated that the frequencies of ACGL (L, long) and GTCL haplotypes were lower in the case group than in the control group (both p < 0.05). In the case group, the genotype and allele frequencies of the COL2A1 genes, rs1793953 and rs2276454, and Aggrecan VNTR significantly differed in terms of Pfirrmann grades III, IV, and V (all p < 0.05). Personal history of spine sprain or crush injury, history of IVDD in a first-degree relative, and COL2A1 rs2276454 and Aggrecan VNTR presence may be independent risk factors of IVDD (all p < 0.05, odds ratio [OR] >1), whereas tea drinking habit, part-time sports participation, and COL2A1 rs1793953 presence may be protective factors of IVDD (all p < 0.05, OR <1). CONCLUSION Our study provides evidence that COL2A1 and Aggrecan genetic polymorphisms may be correlated with the risk and clinicopathological features of IVDD in a Chinese Han population, and ACGL and GTCL haplotypes may be protective factors of IVDD.
Collapse
Affiliation(s)
- Yu Deng
- 1 Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University , Wuhan, P.R. China
| | - Xin-Ti Tan
- 2 Department of Histology and Embryology, Basic Medical School, Wuhan University , Wuhan, P.R. China
| | - Qiang Wu
- 1 Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University , Wuhan, P.R. China
| | - Xin Wang
- 1 Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University , Wuhan, P.R. China
| |
Collapse
|
17
|
Sarath Babu N, Krishnan S, Brahmendra Swamy CV, Venkata Subbaiah GP, Gurava Reddy AV, Idris MM. Quantitative proteomic analysis of normal and degenerated human intervertebral disc. Spine J 2016; 16:989-1000. [PMID: 27125197 DOI: 10.1016/j.spinee.2016.03.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/04/2016] [Accepted: 03/31/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Degenerative disc disease (DDD) is the most common disease of aging in humans. DDD is characterized by the gradual damage of the intervertebral discs. The disease is characterized by progressive dehydration of nucleus pulposus and disruption of annulus fibrosus of intervertebral disc. PURPOSE Even though it is highly prevalent, there is no effective therapy to regenerate the degenerated disc, or decrease or halt the disease progression. Therefore, novel monitoring and diagnostic tests are essential to develop an alternative therapeutic strategies which can prevent further progression of disc degeneration. STUDY DESIGN The study was designed to understand the proteome map of annulus fibrosus and nucleus pulposus tissues of intervertebral disc and its differential expression in patients with DDD. METHODS The proteome map of the annulus fibrosus and nucleus pulposus tissues of intervertebral disc was cataloged involving one-dimensional gel electrophoresis-Fourier transform mass spectrometry/ion trap tandem mass spectrometry (FTMS/ITMSMS) analysis. The altered proteome patterns of annulus fibrosus and nucleus pulposus tissues for DDD were identified using Isobaric tag for relative and absolute quantification (iTRAQ)-based quantitative proteomics coupled with FTMS/ITMSMS and network pathway analysis. RESULTS The study identified a total of 759 and 692 proteins from the annulus fibrosus and the nucleus pulposus tissues of the disc based on FTMS/ITMSMS analysis, which includes 118 proteins commonly identified between the two tissues. Vibrant changes were observed between the normal and the degenerating annulus fibrosus and nucleus pulposus tissues. A total of 73 and 54 proteins were identified as differentially regulated in the annulus and the nucleus tissues, respectively, between the normal and the degenerated tissues independently. Network pathway analysis mapped the differentially expressed proteins to cell adhesion, cell migration, and interleukin13 signaling pathways. CONCLUSIONS Altogether, the current study provides a novel vision in the biomechanism of human disc degeneration and a certain number of proteins with the potential biomarker value for the preliminary diagnosis and scenario of DDD.
Collapse
Affiliation(s)
| | | | | | - Goli P Venkata Subbaiah
- Sunshine Hospitals, SMART (Sunshine Medical Academy For Research and Training), Penderghast Rd, Secunderabad, 500003, India
| | | | | |
Collapse
|
18
|
Decoding the intervertebral disc: Unravelling the complexities of cell phenotypes and pathways associated with degeneration and mechanotransduction. Semin Cell Dev Biol 2016; 62:94-103. [PMID: 27208724 DOI: 10.1016/j.semcdb.2016.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Back pain is the most common cause of pain and disability worldwide. While its etiology remains unknown, it is typically associated with intervertebral disc (IVD) degeneration. Despite the prevalence of back pain, relatively little is known about the specific cellular pathways and mechanisms that contribute to the development, function and degeneration of the IVD. Consequently, current treatments for back pain are largely limited to symptomatic interventions. However, major progress is being made in multiple research directions to unravel the biology and pathology of the IVD, raising hope that effective disease-modifying interventions will soon be developed. In this review, we will discuss our current knowledge and gaps in knowledge on the developmental origin of the IVD, the phenotype of the distinct cell types found within the IVD tissues, molecular targets in IVD degeneration identified using bioinformatics strategies, and mechanotransduction pathways that influence IVD cell fate and function.
Collapse
|
19
|
Risbud MV, Schoepflin ZR, Mwale F, Kandel RA, Grad S, Iatridis JC, Sakai D, Hoyland JA. Defining the phenotype of young healthy nucleus pulposus cells: recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting. J Orthop Res 2015; 33:283-93. [PMID: 25411088 PMCID: PMC4399824 DOI: 10.1002/jor.22789] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/06/2014] [Indexed: 02/04/2023]
Abstract
Low back pain is a major physical and socioeconomic problem. Degeneration of the intervertebral disc and especially that of nucleus pulposus (NP) has been linked to low back pain. In spite of much research focusing on the NP, consensus among the research community is lacking in defining the NP cell phenotype. A consensus agreement will allow easier distinguishing of NP cells from annulus fibrosus (AF) cells and endplate chondrocytes, a better gauge of therapeutic success, and a better guidance of tissue-engineering-based regenerative strategies that attempt to replace lost NP tissue. Most importantly, a clear definition will further the understanding of physiology and function of NP cells, ultimately driving development of novel cell-based therapeutic modalities. The Spine Research Interest Group at the 2014 Annual ORS Meeting in New Orleans convened with the task of compiling a working definition of the NP cell phenotype with hope that a consensus statement will propel disc research forward into the future. Based on evaluation of recent studies describing characteristic NP markers and their physiologic relevance, we make the recommendation of the following healthy NP phenotypic markers: stabilized expression of HIF-1α, GLUT-1, aggrecan/collagen II ratio >20, Shh, Brachyury, KRT18/19, CA12, and CD24.
Collapse
Affiliation(s)
- Makarand V. Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia PA
| | - Zachary R. Schoepflin
- Department of Orthopaedic Surgery and Graduate Program in Cell and Developmental Biology, Thomas Jefferson University, Philadelphia PA
| | - Fackson Mwale
- Division of Orthopaedic Surgery, McGill University, Lady Davis Institute for Medical Research, Montreal, Quebec H3T 1E2, Canada
| | - Rita A. Kandel
- Department of Pathology and Laboratory Medicine, Lunenfeld Tannenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | - James C. Iatridis
- Department of Orthopaedics and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Judith A. Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Wan ZY, Song F, Sun Z, Chen YF, Zhang WL, Samartzis D, Ma CJ, Che L, Liu X, Ali MA, Wang HQ, Luo ZJ. Aberrantly expressed long noncoding RNAs in human intervertebral disc degeneration: a microarray related study. Arthritis Res Ther 2014; 16:465. [PMID: 25280944 PMCID: PMC4201740 DOI: 10.1186/s13075-014-0465-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 09/24/2014] [Indexed: 12/22/2022] Open
Abstract
Introduction In addition to the well-known short noncoding RNAs such as microRNAs (miRNAs), increasing evidence suggests that long noncoding RNAs (lncRNAs) act as key regulators in a wide aspect of biologic processes. Dysregulated expression of lncRNAs has been demonstrated being implicated in a variety of human diseases. However, little is known regarding the role of lncRNAs with regards to intervertebral disc degeneration (IDD). In the present study we aimed to determine whether lncRNAs are differentially expressed in IDD. Methods An lncRNA-mRNA microarray analysis of human nucleus pulposus (NP) was employed. Bioinformatics prediction was also applied to delineate the functional roles of the differentially expressed lncRNAs. Several lncRNAs and mRNAs were chosen for quantitative real-time PCR (qRT-PCR) validation. Results Microarray data profiling indicated that 116 lncRNAs (67 up and 49 down) and 260 mRNAs were highly differentially expressed with an absolute fold change greater than ten. Moreover, 1,052 lncRNAs and 1,314 mRNAs were differentially expressed in the same direction in at least four of the five degenerative samples with fold change greater than two. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for the differentially expressed mRNAs indicated a number of pathways, such as extracellular matrix (ECM)-receptor interaction. A coding-noncoding gene co-expression (CNC) network was constructed for the ten most significantly changed lncRNAs. Annotation terms of the coexpressed mRNAs were related to several known degenerative alterations, such as chondrocyte differentiation. Moreover, lncRNAs belonging to a particular subgroup were identified. Functional annotation for the corresponding nearby coding genes showed that these lncRNAs were mainly associated with cell migration and phosphorylation. Interestingly, we found that Fas-associated protein factor-1 (FAF1), which potentiates the Fas-mediated apoptosis and its nearby enhancer-like lncRNA RP11-296A18.3, were highly expressed in the degenerative discs. Subsequent qRT-PCR results confirmed the changes. Conclusions This is the first study to demonstrate that aberrantly expressed lncRNAs play a role in the development of IDD. Our study noted that up-regulated RP11-296A18.3 highly likely induced the over-expression of FAF1, which eventually promoted the aberrant apoptosis of disc cells. Such findings further broaden the understanding of the etiology of IDD. Electronic supplementary material The online version of this article (doi:10.1186/s13075-014-0465-5) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Fernández-Albert F, Llorach R, Garcia-Aloy M, Ziyatdinov A, Andres-Lacueva C, Perera A. Intensity drift removal in LC/MS metabolomics by common variance compensation. Bioinformatics 2014; 30:2899-905. [DOI: 10.1093/bioinformatics/btu423] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Zhang W, Zeng T, Chen L. EdgeMarker: Identifying differentially correlated molecule pairs as edge-biomarkers. J Theor Biol 2014; 362:35-43. [PMID: 24931676 DOI: 10.1016/j.jtbi.2014.05.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
Biomarker discovery is one of the major topics in translational biomedicine study based on high-throughput biological data analysis. Traditional methods focus on differentially expressed genes (or node-biomarkers) but ignore non-differentials. However, non-differentially expressed genes also play important roles in the biological processes and the rewired interactions / edges among non-differential genes may reveal fundamental difference between variable conditions. Therefore, it is necessary to identify relevant interactions or gene pairs to elucidate the molecular mechanism of complex biological phenomena, e.g. distinguish different phenotypes. To address this issue, we proposed a new method based on a new vector representation of an edge, EdgeMarker, to (1) identify edge-biomarkers, i.e. the differentially correlated molecular pairs (e.g., gene pairs) with optimal classification ability, and (2) transform the 'node expression' data in node space into the 'edge expression' data in edge space and classify the phenotype of each single sample in edge space, which generally cannot be achieved in traditional methods. Unlike the traditional methods which analyze the node space (i.e. molecular expression space) or higher dimensional space using arbitrary kernel methods, this study provides a mathematical model to explore the edge space (i.e. correlation space) for classification of a single sample. In this work, we show that the identified edge-biomarkers indeed have strong ability in distinguishing normal and disease samples even when all involved genes are not significantly differentially expressed. The analysis of human cholangiocarcinoma dataset and diabetes dataset also suggested that the identified edge-biomarkers may cast new biological insights into the pathogenesis of human complex diseases.
Collapse
Affiliation(s)
- Wanwei Zhang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Collaborative Research Center for Innovative Mathematical Modelling, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan.
| |
Collapse
|