1
|
Meng Y, Ma X, Luan F, Zhao Z, Li Y, Xiao X, Wang Q, Zhang J, Thandar SM. Sustainable enhancement of Cr(VI) bioreduction by the isolated Cr(VI)-resistant bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152433. [PMID: 34942251 DOI: 10.1016/j.scitotenv.2021.152433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Bioreduction of mobile Cr(VI) to sparingly soluble Cr(III) is an effective strategy for in situ remediations of Cr contaminated sites. The key of this technology is to screen Cr(VI)-resistant bacteria and further explore the sustainable enhancement approaches towards their Cr(VI) reduction performance. In this study, a total of ten Cr(VI)-resistant bacteria were isolated from a Cr(VI) contaminated site. All of them could reduce Cr(VI), and the greatest extent of Cr(VI) reduction (98%) was obtained by the isolated CRB6 strain. The isolated CRB6 was able to reduce structural Fe(III) in Nontronite NAu-2 to structural Fe(II). Compared with the slow bioreduction process, the produced structural Fe(II) can rapidly enhance Cr(VI) reduction. The resist dissolution characteristics of NAu-2 in the redox cycling may provide sustainable enhancement of Cr(VI) reduction. However, no enhancement on Cr(VI) bioreduction by the isolated CRB6 was observed in the presence of NAu-2, which was attributed to the inhibition of Cr(VI) on the electron transfer between the isolated CRB6 and NAu-2. AQDS can accelerate the electron transfer between the isolated CRB6 and NAu-2 as an electron shuttle in the presence of Cr(VI). Therefore, the combination of NAu-2 and AQDS generated a synergistic enhancement on Cr(VI) bioreduction compared with the enhancement obtained by NAu-2 and AQDS individually. Our results highlight that structural Fe(III) and electron shuttle can provide a sustainable enhancement of Cr(VI) reduction by Cr(VI)-reducing bacteria, which has great potential for the effective Cr(VI) in-situ remediation.
Collapse
Affiliation(s)
- Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Xiaoxu Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Ziwang Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yuan Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Geological Exploration and Research Institute, CNACG, Beijing 100039, PR China
| | - Xiao Xiao
- New World Environmental Protection Group, ZhuZhou 412007, PR China
| | - Qianqian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China
| | - Jianda Zhang
- School of Geographical Sciences,Hebei Normal University; Hebei Key Laboratory of Environmental Change and Ecological Construction; Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change,Shijiazhuang 050024, PR China.
| | - Soe Myat Thandar
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Department of Biotechnology, Mandalay Technological University, Ministry of Education, Mandalay, Myanmar.
| |
Collapse
|
2
|
Evidence of Resistance of Heavy Metals from Bacteria Isolated from Natural Waters of a Mining Area in Mexico. WATER 2021. [DOI: 10.3390/w13192766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study focuses on identifying relationships between the content of heavy metals in water and the resistance patterns of different bacteria. Samples from watercourses in one of the most important mining areas in Mexico were collected. Seventy-one bacteria were isolated, and their resistance to Cr, Zn, Cu, Ag, Hg, and Co was studied. The Minimum Inhibitory Concentration range was determined, and a Multiple Metal Resistant index was calculated. After that, 11 isolated bacteria were chosen to estimate kinetic parameters. The obtained results show differences in the behavior of the studied bacteria concerning the presence of heavy metals in the media: (1) without effect, (2) inhibited growth; and (3) considerable inhibited growth. Finally, a Performance Index was proposed to select adequate bacteria for heavy metals removal; five bacteria were selected. Among them, Pseudomonas koreensis was identified as a good candidate for a future biosorption system since these bacteria can stimulate growth in the presence of all the metals tested.
Collapse
|
3
|
Rahman Z, Thomas L. Chemical-Assisted Microbially Mediated Chromium (Cr) (VI) Reduction Under the Influence of Various Electron Donors, Redox Mediators, and Other Additives: An Outlook on Enhanced Cr(VI) Removal. Front Microbiol 2021; 11:619766. [PMID: 33584585 PMCID: PMC7875889 DOI: 10.3389/fmicb.2020.619766] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Chromium (Cr) (VI) is a well-known toxin to all types of biological organisms. Over the past few decades, many investigators have employed numerous bioprocesses to neutralize the toxic effects of Cr(VI). One of the main process for its treatment is bioreduction into Cr(III). Key to this process is the ability of microbial enzymes, which facilitate the transfer of electrons into the high valence state of the metal that acts as an electron acceptor. Many underlying previous efforts have stressed on the use of different external organic and inorganic substances as electron donors to promote Cr(VI) reduction process by different microorganisms. The use of various redox mediators enabled electron transport facility for extracellular Cr(VI) reduction and accelerated the reaction. Also, many chemicals have employed diverse roles to improve the Cr(VI) reduction process in different microorganisms. The application of aforementioned materials at the contaminated systems has offered a variety of influence on Cr(VI) bioremediation by altering microbial community structures and functions and redox environment. The collective insights suggest that the knowledge of appropriate implementation of suitable nutrients can strongly inspire the Cr(VI) reduction rate and efficiency. However, a comprehensive information on such substances and their roles and biochemical pathways in different microorganisms remains elusive. In this regard, our review sheds light on the contributions of various chemicals as electron donors, redox mediators, cofactors, etc., on microbial Cr(VI) reduction for enhanced treatment practices.
Collapse
Affiliation(s)
- Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| |
Collapse
|
4
|
Lin WH, Chen SC, Chien CC, Tsang DCW, Lo KH, Kao CM. Application of enhanced bioreduction for hexavalent chromium-polluted groundwater cleanup: Microcosm and microbial diversity studies. ENVIRONMENTAL RESEARCH 2020; 184:109296. [PMID: 32146214 DOI: 10.1016/j.envres.2020.109296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/19/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
Hexavalent chromium (Cr6+) is a commonly found heavy metal at polluted groundwater sites. In this study, the effectiveness of Cr6+ bioreduction by the chromium-reducing bacteria was evaluated to remediate Cr6+-contaminated groundwater. Microcosms were constructed using indigenous microbial consortia from a Cr6+-contaminated aquifer as the inocula, and slow-releasing emulsified polycolloid-substrate (ES), cane molasses (CM), and nutrient broth (NB) as the primary substrates. The genes responsible for the bioreduction of Cr6+ and variations in bacterial diversity were evaluated using metagenomics assay. Complete Cr6+ reduction via the biological mechanism was observed within 80 days using CM as the carbon source under anaerobic processes with the increased trivalent chromium (Cr3+) concentrations. Cr6+ removal efficiencies were 83% and 59% in microcosms using ES and NB as the substrates, respectively. Increased bacterial communities associated with Cr6+ bioreduction was observed in microcosms treated with CM and ES. Decreased bacterial communities were observed in NB microcosms. Compared to ES, CM was more applicable by indigenous Cr6+ reduction bacteria and resulted in effective Cr6+ bioreduction, which was possibly due to the growth of Cr6+-reduction related bacteria including Sporolactobacillus, Clostridium, and Ensifer. While NB was applied for specific bacterial selection, it might not be appropriate for electron donor application. These results revealed that substrate addition had significant impact on microbial diversities, which affected Cr6+ bioreduction processes. Results are useful for designing a green and sustainable bioreduction system for Cr6+-polluted groundwater remediation.
Collapse
Affiliation(s)
- Wei-Han Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Chung-Li City, Taoyuan, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Kai-Hung Lo
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Bansal N, Coetzee JJ, Chirwa EMN. In situ bioremediation of hexavalent chromium in presence of iron by dried sludge bacteria exposed to high chromium concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:281-289. [PMID: 30716662 DOI: 10.1016/j.ecoenv.2019.01.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Stability of chromium in the ferrochrome slag dumps and leachate are affected by pH, redox potential and the presence of other metallic species in the slag. It is desirable to keep chromium in slag dumps in the trivalent [Cr(III)] state because trivalent chromium is 1000 times less toxic to living organisms than the hexavalent form [Cr(VI)]. Due to the low toxicity and low mobility of Cr(III), it is recommended to convert Cr(VI) to Cr(III) wherever possible to protect the health of living organisms. In this study, the role of Cr(VI) reducing organisms for stabilising chromium in slag dumps was evaluated in the presence of iron [oxidation states Fe(II) and Fe(III)]. The study showed that stabilisation of chromium species in the trivalent state was most favourable under aerated conditions. Up to 100 mg/L Cr(VI) was reduced in less than 24 h by cultures grown under aerobic conditions in the presence of Fe(III). A much shorter time (6 h) was required to reduce the same amount of Cr(VI) in the presence of Fe(II). When oxygen was completely excluded, it was only possible to reduce 20 mg/L in about 48 h which was much slower than the removal of 100 mg/L in less than 24 h under aerated conditions. Fe(II) contributed directly to catalytic reduction of Cr(VI) reduction whereas Fe(III) was beneficial to Cr(VI) reduction up to an initial Cr(VI) concentration of 75 mg/L. Evaluation of Cr(VI) reduction kinetics showed that Cr(VI) reduction under aerobic conditions followed the non-competitively inhibited mixed-order reaction. Cr(VI) reduction in sealed reactor vessels, under anaerobic conditions, followed a modified non-competitive inhibition reaction model. The results indicate that chromium stabilisation in ferrochrome slag dumps would require maintenance of a fully aerated dump supplemented by a culture of Cr(VI) reducing organisms.
Collapse
Affiliation(s)
- Neetu Bansal
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa.
| | - Johan J Coetzee
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa
| | - Evans M N Chirwa
- Department of Chemical Engineering, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
6
|
Field EK, Blaskovich JP, Peyton BM, Gerlach R. Carbon-dependent chromate toxicity mechanism in an environmental Arthrobacter isolate. JOURNAL OF HAZARDOUS MATERIALS 2018; 355:162-169. [PMID: 29800910 DOI: 10.1016/j.jhazmat.2018.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Arthrobacter spp. are widespread in soil systems and well-known for their Cr(VI) reduction capabilities making them attractive candidates for in situ bioremediation efforts. Cellulose drives carbon flow in soil systems; yet, most laboratory studies evaluate Arthrobacter-Cr(VI) interactions solely with nutrient-rich media or glucose. This study aims to determine how various cellulose degradation products and biostimulation substrates influence Cr(VI) toxicity, reduction, and microbial growth of an environmental Arthrobacter sp. isolate. Laboratory culture-based studies suggest there is a carbon-dependent Cr(VI) toxicity mechanism that affects subsequent Cr(VI) reduction by strain LLW01. Strain LLW01 could only grow in the presence of, and reduce, 50 μM Cr(VI) when glucose or lactate were provided. Compared to lactate, Cr(VI) was at least 30-fold and 10-fold more toxic when ethanol or butyrate was the sole carbon source, respectively. The addition of sulfate mitigated toxicity somewhat, but had no effect on the extent of Cr(VI) reduction. Cell viability studies indicated that a small fraction of cells were viable after 8 days suggesting cell growth and subsequent Cr(VI) reduction may resume. These results suggest when designing bioremediation strategies with Arthrobacter spp. such as strain LLW01, carbon sources such as glucose and lactate should be considered over ethanol and butyrate.
Collapse
Affiliation(s)
- Erin K Field
- Department of Biology, East Carolina University, Greenville, NC, 27858, United States; Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, United States.
| | - John P Blaskovich
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, United States; Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, United States
| | - Brent M Peyton
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, United States; Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, United States
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, United States; Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, 59717, United States.
| |
Collapse
|
7
|
Kiran Kumar Reddy G, Nancharaiah YV. Sustainable bioreduction of toxic levels of chromate in a denitrifying granular sludge reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1969-1979. [PMID: 29105040 DOI: 10.1007/s11356-017-0600-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Biological removal of chromate [Cr(VI)] in the presence or absence of nitrate by granular sludge biofilms was investigated in batch experiments and in a sequencing batch reactor (SBR). Denitrifying granular sludge cultivated from activated sludge was able to directly reduce Cr(VI) in the presence of an electron donor. Bioreduction was dependent on the initial Cr(VI) and the granular sludge concentrations. Bioreduction of Cr(VI) was followed by Cr(III) precipitation or entrapment in the granular sludge which was corroborated with decrease in total soluble Cr and increase in inorganic content of biomass. Batch experiments revealed that Cr(VI) addition has no major influence on high-strength nitrate (3000 mg L-1) denitrification, but nitrite denitrification was slowed-down. However, SBR experiment demonstrated successful denitrification as well as Cr(VI) removal due to enrichment of Cr(VI)-tolerant denitrifying bacteria. In fact, stable SBR performance in terms of complete and sustained removal of 0.05, 0.1, 0.2, 0.3, 0.5 and 0.75 mM Cr(VI) and denitrification of 3000 mg L-1 was observed during 2 months of operation. Active biomass and electron donor-dependent Cr(VI) removal, detection of Cr(III) in the biomass and recovery of ~ 92% of the Cr from the granular sludge biofilms confirms bioreduction followed by precipitation or entrapment of Cr(III) as the principal chromate removal mechanism. Metagenomic bacterial community analysis showed enrichment of Halomonas sp. in denitrifying granular sludge performing either denitrification or simultaneous reduction of nitrate and chromate.
Collapse
Affiliation(s)
- G Kiran Kumar Reddy
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, India
- Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, India.
- Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai, 400 094, India.
| |
Collapse
|
8
|
Pradhan D, Sukla LB, Sawyer M, Rahman PK. Recent bioreduction of hexavalent chromium in wastewater treatment: A review. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.06.040] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
A Green Microbial Fuel Cell-Based Biosensor for In Situ Chromium (VI) Measurement in Electroplating Wastewater. SENSORS 2017; 17:s17112461. [PMID: 29076985 PMCID: PMC5712896 DOI: 10.3390/s17112461] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 11/25/2022]
Abstract
The extensive use of Cr(VI) in many industries and the disposal of Cr(VI)-containing wastes have resulted in Cr(VI)-induced environmental contamination. Cr(VI) compounds are associated with increased cancer risks; hence, the detection of toxic Cr(VI) compounds is crucial. Various methods have been developed for Cr(VI) measurement, but they are often conducted offsite and cannot provide real-time toxicity monitoring. A microbial fuel cell (MFC) is an eco-friendly and self-sustaining device that has great potential as a biosensor for in situ Cr(VI) measurement, especially for wastewater generated from different electroplating units. In this study, Exiguobacterium aestuarii YC211, a facultatively anaerobic, Cr(VI)-reducing, salt-tolerant, and exoelectrogenic bacterium, was isolated and inoculated into an MFC to evaluate its feasibility as a Cr(VI) biosensor. The Cr(VI) removal efficiency of E. aestuarii YC211 was not affected by the surrounding environment (pH 5–9, 20–35 °C, coexisting ions, and salinity of 0–15 g/L). The maximum power density of the MFC biosensor was 98.3 ± 1.5 mW/m2 at 1500 Ω. A good linear relationship (r2 = 0.997) was observed between the Cr(VI) concentration (2.5–60 mg/L) and the voltage output. The developed MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in the actual electroplating wastewater that is generated from different electroplating units within 30 min with low deviations (−6.1% to 2.2%). After treating the actual electroplating wastewater with the MFC, the predominant family in the biofilm was found to be Bacillaceae (95.3%) and was further identified as the originally inoculated E. aestuarii YC211 by next generation sequencing (NGS). Thus, the MFC biosensor can measure Cr(VI) concentrations in situ in the effluents from different electroplating units, and it can potentially help in preventing the violation of effluent regulations.
Collapse
|
10
|
Al-Battashi H, Joshi SJ, Pracejus B, Al-Ansari A. The Geomicrobiology of Chromium (VI) Pollution: Microbial Diversity and its Bioremediation Potential. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The role and significance of microorganisms in environmental recycling activities marks geomicrobiology one of the essential branches within the environmental biotechnology field. Naturally occurring microbes also play geo-active roles in rocks, leading to biomineralization or biomobilization of minerals and metals. Heavy metals, such as chromium (Cr), are essential micronutrients at very low concentrations, but are very toxic at higher concentrations. Generally, heavy metals are leached to the environment through natural processes or anthropogenic activities such as industrial processes, leading to pollution with serious consequences. The presence of potentially toxic heavy metals, including Cr, in soils does not necessarily result in toxicity because not all forms of metals are toxic. Microbial interaction with Cr by different mechanisms leads to its oxidation or reduction, where its toxicity could be increased or decreased. Chromite contains both Cr(III) and Fe(II) and microbial utilization of Fe(II)- Fe(III) conversion or Cr (III) - Cr (VI) could lead to the break-down of this mineral. Therefore, the extraction of chromium from its mineral as Cr (III) form increases the possibility of its oxidation and conversion to the more toxic form (Cr (VI)), either biologically or geochemically. Cr (VI) is quite toxic to plants, animals and microbes, thus its levels in the environment need to be studied and controlled properly. Several bacterial and fungal isolates showed high tolerance and resistance to toxic Cr species and they also demonstrated transformation to less toxic form Cr (III), and precipitation. The current review highlights toxicity issues associated with Cr species and environmental friendly bioremediation mediated by microorganisms.
Collapse
|
11
|
Dey S, Paul AK. Evaluation of chromate reductase activity in the cell-free culture filtrate of Arthrobacter sp. SUK 1201 isolated from chromite mine overburden. CHEMOSPHERE 2016; 156:69-75. [PMID: 27176938 DOI: 10.1016/j.chemosphere.2016.04.101] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 04/05/2016] [Accepted: 04/24/2016] [Indexed: 06/05/2023]
Abstract
Arthrobacter sp. SUK 1201, a chromate resistant and reducing bacterium isolated from chromite mine overburden of Sukinda valley, Odisha, India has been evaluated for its hexavalent chromium [Cr(VI)] reduction potential using cell-free culture filtrate as extracellular chromate reductase enzyme. Production of the enzyme was enhanced in presence of Cr(VI) and its reducing efficiency was increased with increasing concentration of Cr(VI). The Michaelis-Menten constant (Km) and the maximum specific velocity (Vmax) of the extracellular Cr(VI) reductase were calculated to be 54.03 μM Cr(VI) and 5.803 U mg(-1) of protein respectively showing high affinity towards Cr(VI). The reducing activity of the enzyme was maximum at pH 6.5-7.5 and at a temperature of 35 °C and was dependent on NADH. The enzyme was tolerant to different metals such as Mn(II), Mg(II) and Fe(III) and was able to reduce Cr(VI) present in chromite mine seepage. These findings suggest that the extracellular chromate reductase of Arthrobacter sp. SUK 1201 has a great promise for use in Cr(VI) detoxification under different environmental conditions, particularly in the mining waste water treatment systems.
Collapse
Affiliation(s)
- Satarupa Dey
- Microbiology Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700 019, India.
| | - A K Paul
- Microbiology Laboratory, Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700 019, India.
| |
Collapse
|
12
|
Paul AK, Dey S. Hexavalent Chromate Reduction During Growth and by Immobilized Cells of Arthrobacter sp. SUK 1205. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/std.2015.158.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Suchhanda G, Arkamitra M, A KP. Hexavalent chromium biosorption by dried biomass of Aspergillus niger NUA101 isolated from Indian ultramafic complex. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2014.7048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Michailides MK, Tekerlekopoulou AG, Akratos CS, Coles S, Pavlou S, Vayenas DV. Molasses as an efficient low-cost carbon source for biological Cr(VI) removal. JOURNAL OF HAZARDOUS MATERIALS 2015; 281:95-105. [PMID: 25160055 DOI: 10.1016/j.jhazmat.2014.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 07/31/2014] [Accepted: 08/06/2014] [Indexed: 06/03/2023]
Abstract
In the present study, indigenous microorganisms from industrial sludge were used to reduce the activity of Cr(VI). Molasses, a by-product of sugar processing, was selected as the carbon source (instead of sugar used in a previous work) as it is a low-cost energy source for bioprocesses. Initially, experiments were carried out in suspended growth batch reactors for Cr(VI) concentrations of 1.5-110 mg/L. The time required for complete Cr(VI) reduction increased with initial Cr(VI) concentration. Initial molasses concentration was also found to influence the Cr(VI) reduction rate. The optimal concentration for all initial Cr(VI) concentrations tested was 0.8 gC/L. Experiments were also carried out in packed-bed reactors. Three different operating modes were used to investigate the optimal performance and efficiency of the filter, i.e. batch, continuous and SBR with recirculation. The latter mode with a recirculation rate of 0.5L/min lead to significantly high Cr(VI) reduction rates (up to 135 g/m(2)d). The results of this work were compared with those of a similar work using sugar as the carbon source and indicate that molasses could prove a feasible technological solution to a serious environmental problem.
Collapse
Affiliation(s)
- Michail K Michailides
- Department of Environmental and Natural Resources Management, University of Patras, 2 G. Seferi Str., GR-30100 Agrinio, Greece
| | - Athanasia G Tekerlekopoulou
- Department of Environmental and Natural Resources Management, University of Patras, 2 G. Seferi Str., GR-30100 Agrinio, Greece.
| | - Christos S Akratos
- Department of Environmental and Natural Resources Management, University of Patras, 2 G. Seferi Str., GR-30100 Agrinio, Greece
| | - Sandra Coles
- Department of Environmental and Natural Resources Management, University of Patras, 2 G. Seferi Str., GR-30100 Agrinio, Greece
| | - Stavros Pavlou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., Platani, P.O. Box 1414, GR-26504 Patras, Greece; Department of Chemical Engineering, University of Patras, GR-26504 Patras, Greece
| | - Dimitrios V Vayenas
- Department of Environmental and Natural Resources Management, University of Patras, 2 G. Seferi Str., GR-30100 Agrinio, Greece; Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou Str., Platani, P.O. Box 1414, GR-26504 Patras, Greece
| |
Collapse
|
15
|
Thatoi H, Das S, Mishra J, Rath BP, Das N. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 146:383-399. [PMID: 25199606 DOI: 10.1016/j.jenvman.2014.07.014] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 05/14/2023]
Abstract
Hexavalent chromium is mobile, highly toxic and considered as a priority environmental pollutant. Chromate reductases, found in chromium resistant bacteria are known to catalyse the reduction of Cr(VI) to Cr(III) and have recently received particular attention for their potential use in bioremediation process. Different chromate reductases such as ChrR, YieF, NemA and LpDH, have been identified from bacterial sources which are located either in soluble fractions (cytoplasm) or bound to the membrane of the bacterial cell. The reducing conditions under which these enzymes are functional can either be aerobic or anaerobic or sometimes both. Enzymatic reduction of Cr(VI) to Cr(III) involves transfer of electrons from electron donors like NAD(P)H to Cr(VI) and simultaneous generation of reactive oxygen species (ROS). Based on the steps involved in electron transfer to Cr(VI) and the subsequent amount of ROS generated, two reaction mechanisms, namely, Class I "tight" and Class II "semi tight" have been proposed. The present review discusses on the types of chromate reductases found in different bacteria, their mode of action and potential applications in bioremediation of hexavalent chromium both under free and immobilize conditions. Besides, techniques used in characterization of the Cr (VI) reduced products were also discussed.
Collapse
Affiliation(s)
- Hrudayanath Thatoi
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India.
| | - Sasmita Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Jigni Mishra
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Bhagwat Prasad Rath
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Nigamananda Das
- Department of Chemistry, North Orissa University, Takatpur, Baripada 757003, Odisha, India
| |
Collapse
|
16
|
Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances. Folia Microbiol (Praha) 2014; 59:321-32. [PMID: 24470188 DOI: 10.1007/s12223-014-0304-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/12/2014] [Indexed: 01/16/2023]
Abstract
Chromium pollution is increasing incessantly due to continuing industrialization. Of various oxidation states, Cr(6+) is very toxic due to its carcinogenic and mutagenic nature. It also has deleterious effects on different microorganisms as well as on plants. Many species of bacteria thriving in the Cr(6+)-contaminated environments have evolved novel strategies to cope with Cr(6+) toxicity. Generally, decreased uptake or exclusion of Cr(6+) compounds through the membranes, biosorption, and the upregulation of genes associated with oxidative stress response are some of the resistance mechanisms in bacterial cells to overcome the Cr(6+) stress. In addition, bacterial Cr(6+) reduction into Cr(3+) is also a mechanism of specific significance as it transforms toxic and mobile chromium derivatives into reduced species which are innocuous and immobile. Ecologically, the bacterial trait of reductive immobilization of Cr(6+) derivatives is of great advantage in bioremediation. The present review is an effort to underline the bacterial resistance and reducing mechanisms to Cr(6+) compounds with recent development in order to garner a broad perspective.
Collapse
|