1
|
Lv L, Li W, Guo D, Shi B, Li Y. Early Sacral Neuromodulation Prevented Detrusor Overactivity in Rats With Spinal Cord Injury. Neuromodulation 2024:S1094-7159(24)00629-9. [PMID: 39046393 DOI: 10.1016/j.neurom.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/05/2024] [Accepted: 05/24/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES Sacral neuromodulation (SNM) has been shown to alleviate bladder dysfunction in patients with overactive bladder and nonobstructive urinary retention. However, the therapeutic effect and mechanism of SNM in neurogenic bladder dysfunction are still not fully understood. Using a rat model of spinal cord injury (SCI), this study aims to investigate the therapeutic effect of early SNM in the bladder-areflexia phase on neurogenic bladder dysfunction and evaluate its possible mechanism. MATERIALS AND METHODS Basic physiological parameters such as body/bladder weight, blood pressure, and electrocardiogram results were measured to evaluate the safety of SNM. Enzyme-linked immunosorbent assays and quantitative real-time polymerase chain reaction were used to examine the expression of proinflammatory factors. Hematoxylin and eosin and Masson's trichrome staining were used to observe morphological changes, and cystometry was used to evaluate urodynamic changes after SNM treatment. Western blotting and immunofluorescence staining were used to measure the levels of transient receptor potential vanilloid 1 (TRPV1) and calcitonin gene-related peptide (CGRP) in the L6-S1 dorsal root ganglia (DRGs) and bladder. Capsaicin desensitization was used to investigate whether inhibiting TRPV1 could prevent detrusor overactivity in SCI rats. RESULTS Early SNM did not affect the body/bladder weight, heart rate, blood pressure, or the expression of proinflammatory cytokines (PGE2, IL-1, IL-2, IL-6, TGF-β, or TNF-α) in the bladders of SCI rats. Morphologically, early SNM prevented urothelial edema (p = 0.0248) but did not influence collagen/smooth muscle in the bladder. Compared with untreated rats with SCI, the rats treated with SNM exhibited increased bladder capacity (p = 0.0132) and voiding efficiency (p = 0.0179), and decreased nonvoiding contraction (NVC) frequency (p = 0.0240). The maximum pressure, basal pressure, postvoid residual, and NVC amplitude did not change significantly. After the SNM treatment, the expression of TRPV1 in the bladder and CGRP in L6-S1 DRGs weredecreased (L6, p = 0.0160; S1, p = 0.0024) in SCI rats. In capsaicin-desensitized SCI rats, urodynamic results showed an increase in bladder capacity (p = 0.0116) and voiding efficiency (p = 0.0048), and diminished NVC frequency (p = 0.0116), while other parameters did not change significantly. CONCLUSIONS Early SNM prevented urothelial edema morphologically and detrusor overactivity in SCI rats. Inhibition of TRPV1 in the bladder and DRGs may be one of the potential mechanisms for preventing detrusor overactivity by SNM.
Collapse
Affiliation(s)
- Linchen Lv
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China; University of Health and Rehabilitation Sciences, Qingdao, China
| | - Wenxian Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China; Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dongyue Guo
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China; University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China.
| |
Collapse
|
2
|
Vamour N, Dequirez PL, Seguier D, Vermersch P, De Wachter S, Biardeau X. Early interventions to prevent lower urinary tract dysfunction after spinal cord injury: a systematic review. Spinal Cord 2022; 60:382-394. [PMID: 35379959 DOI: 10.1038/s41393-022-00784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/09/2022]
Abstract
STUDY DESIGN Systematic review. OBJECTIVES To synthetise the available scientific literature reporting early interventions to prevent neurogenic lower urinary tract dysfunction (NLUTD) after acute supra-sacral spinal cord injury (SCI). METHODS The present systematic review is reported according to the PRISMA guidelines and identified articles published through April 2021 in the PubMed, Embase, ScienceDirect and Scopus databases with terms for early interventions to prevent NLUTD after SCI. Abstract and full-text screenings were performed by three reviewers independently, while two reviewers performed data extraction independently. An article was considered relevant if it assessed: an in-vivo model of supra-sacral SCI, including a group undergoing an early intervention compared with at least one control group, and reporting clinical, urodynamic, biological and/or histological data. RESULTS Of the 30 studies included in the final synthesis, 9 focused on neurotransmission, 2 on the inflammatory response, 10 on neurotrophicity, 9 on electrical nerve modulation and 1 on multi-system neuroprosthetic training. Overall, 29/30 studies reported significant improvement in urodynamic parameters, for both the storage and the voiding phase. These findings were often associated with substantial modifications at the bladder and spinal cord level, including up/downregulation of neurotransmitters and receptors expression, neural proliferation or axonal sprouting and a reduction of inflammatory response and apoptosis. CONCLUSIONS The present review supports the concept of early interventions to prevent NLUTD after supra-sacral SCI, allowing for the emergence of a potential preventive approach in the coming decades.
Collapse
Affiliation(s)
| | | | | | - Patrick Vermersch
- Univ. Lille, Inserm UMR-S1172 LilNCog, Lille Neuroscience and Cognition, CHU Lille, FHU Precise, F-59000, Lille, France
| | - Stefan De Wachter
- Department of Urology, Antwerp University Hospital, Edegem, Belgium.,Antwerp Surgical Training, Anatomy and Research Centre (ASTARC), Faculty of Medicine and Health Sciences, Wlrijk, Belgium
| | - Xavier Biardeau
- Univ. Lille, Inserm UMR-S1172 LilNCog, Lille Neuroscience and Cognition, CHU Lille, F-59000, Lille, France
| |
Collapse
|
3
|
Duan H, Pang Y, Zhao C, Zhou T, Sun C, Hou M, Ning G, Feng S. A novel, minimally invasive technique to establish the animal model of spinal cord injury. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:881. [PMID: 34164515 PMCID: PMC8184457 DOI: 10.21037/atm-21-2063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background Spinal cord injury (SCI) is a traumatic disease that is associated with high morbidity, disability, and mortality worldwide. The animal spinal cord contusion model is similar to clinical SCI; therefore, this model is often used to study the pathophysiological changes and treatment strategies for humans after SCI. The present study aimed to introduce a novel, minimally invasive technique to establish an SCI model, and to evaluate its advantages compared with conventional methods. Methods Incision length, blood loss, length of time, and model success rate during the operation were recorded. Postoperative hematuria, incision hematoma, scoliosis [detected by micro computed tomography (Micro-CT)] and mortality were analyzed to evaluate surgical complications. The visual observation of the tissue was used to compare the effect of laminectomy by 2 methods on the scar hyperplasia at the injured site. Basso-Beattie-Bresnahan (BBB) score and catwalk automated quantitative gait analysis were conducted to measure behavioral function recovery. To evaluate the nerve function recovery of rats postoperatively, somatosensory evoked potential (SEP) and motor evoked potential (MEP) were studied by electrophysiological analyses. Results The results of operation-related parameters of the two models (conventional surgery group vs. minimally invasive surgery group) were as follows: surgical incision length: 23.58±1.58 versus 12.67±1.50 mm (P<0.05), blood loss: 3.96±1.05 versus 1.34±0.87 mL (P<0.05), and total operative time: 12.67±1.78 versus 10.33±1.92 min (P<0.05). In addition, the success rate of the 2 models was 100%. Surgical complications (conventional surgery group vs. minimally invasive surgery group) were as follows: hematuria: 25% versus 8.3%, kyphosis: 25% versus 0%, incision hematoma: 30% versus 9%, and mortality: 25% versus 8.3%. Micro-CT indicated severe scoliosis in the conventional surgery group. Gross tissue results showed that the conventional surgery group had more severe fibrous scar hyperplasia. The results of the BBB scores, catwalk automated quantitative gait analysis, and electrophysiology showed that the difference between the two groups was statistically significant in terms of behavioral recovery and neuroelectrophysiology. Conclusions The minimally invasive technique has the advantages of small incision and reduced tissue damage and surgical complications, and may be used as an alternative spinal cord contusion method.
Collapse
Affiliation(s)
- Huiquan Duan
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Yilin Pang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Chenxi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Tiangang Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Mengfan Hou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,Department of Orthopaedics, Qilu Hospital, Shandong University, Jinan, China.,Shandong University Center for Orthopaedics, Shandong University, Jinan, China
| |
Collapse
|
4
|
Lee YJ, Yoon CY, Lee MS, Song BD, Lee SW, Jeong SJ. Effect of Early Sacral Neuromodulation on Bladder Function in a Rat Model of Incomplete Spinal Cord Injury Due to Focal Contusion. Neuromodulation 2018; 22:697-702. [PMID: 30506765 DOI: 10.1111/ner.12895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/23/2018] [Accepted: 10/16/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Incomplete spinal cord injury (SCI) accounts for two-thirds of all SCIs in clinical practice. Preclinical research on the effect of sacral neuromodulation (SNM) on bladder function, however, has been focused only on animal models of complete SCI. We aimed to evaluate the effect of early SNM on bladder responses in a rat model of incomplete SCI. MATERIALS AND METHODS Altogether, 21 female Sprague-Dawley rats were equally assigned to control (CTR), SCI + sham stimulation (SHAM), and SCI + SNM (SNM) groups. In the SHAM and SNM groups, incomplete SCI was created by producing a moderate contusion with an NYU-MASCIS impactor at the T9-T10 level of the spine, with needle electrodes implanted bilaterally into the S2 or S3 sacral foramen. Only SNM group underwent electrical stimulation for 28 days, beginning on day 7 after SCI. Cystometry was performed 35 days after SCI. RESULTS Although the interval between voiding contractions was significantly longer in the SHAM group than the CTR group (25.5 ± 1.4 vs. 12.5 ± 1.7 min; p < 0.05), there were no significant differences between the SNM group (16.5 ± 1.5 min) and the CTR group. Maximum voiding contraction pressure did not differ among the groups. The SNM group had a significantly lower frequency (3.5 ± 0.5 vs. 14.6 ± 2.0; p < 0.05) and maximum pressure (11.4 ± 6.2 vs. 21.3 ± 1.8 cmH2 O; p < 0.05) of nonvoiding contractions than the SHAM group. CONCLUSIONS Our results provide experimental evidence that early SNM treatment may prevent or diminish bladder dysfunctions (e.g., detrusor overactivity, abnormal micturition reflex) in a clinical condition of incomplete SCI.
Collapse
Affiliation(s)
- Young Ju Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Cheol Yong Yoon
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Min Seung Lee
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Byung Do Song
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sang Wook Lee
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seong Jin Jeong
- Department of Urology, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|